Tìm số tự nhiên nhỏ nhất, nếu chia số đó cho 3 thì dư 2, chia cho 5 thì dư 4, chia cho 7 thì dư 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gói số đó là a
Ta có:
a = 3k1 + 2 (k1 thuộc N) => a + 1 = 3k1 + 3 chia hết cho 3
a = 5k2 + 4 (k2 thuộc N) => a + 1 = 5k2 + 5 chia hết cho 5
a = 7k3 + 6 (k3 thuộc N) => a + 1 = 7k3 + 7 chia hết cho 7
=> a + 1 chia hết cho BCNN(3,5,7) = 105
Mà 105 chia hết cho 105
=> a + 1 - 105 chia hết cho 105
=> a - 104 chia hết cho 105
=> a - 104 = 105m (m thuộc N) => a = 105m + 104
Vì m nhỏ nhất = 0 => a nhỏ nhất = 105.0 + 104 = 104
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Gọi số đó là a. Theo đề ra ta có:
a chia 5 dư 4 => a+1 chia hết cho 5
a chia 4 dư 3 => a+1 chia hết cho 4
a chia 3 dư 2 => a+1 chia hết cho 3
a chia 2 dư 1 => a+1 chia hết cho 2
=> a+1 là BCNN(2;3;4;5)
BCNN(2;3;4;5)=60
a+1=60 => a=59
Vậy a=59
goi so can tim la a: a:3 du 2;a:5du4;a:7 du 6 nen a+1 chia het cho 3,5,7
hay a+1chia het cho3x5x7=105 ma a nho nhat nen a+1=105=>a=104
vay a=104
Ta nhận thấy số dư của các phép chia là số dư lớn nhất. Vậy số cần tìm chính là số nhỏ nhất chia hết cho 3, chia hết cho 5 và chia hết cho 7 bớt đi 1 đơn vị.
Số cần tìm là: 3 x 5 x 7 – 1 =104
Đáp số: 104