Phân tích đa thức thành nhân tử
a) 5x^2+3(x+y)^2-5y^2
Mong mấy bạn gíup mình lm bài này. Bạn nào lm giúp mình bài này mình sẽ like. Mình cảm ơn trc ạk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xm+4+xm+3-x-1
=(xm+4-x)+(xm+3-1)
=x(xm+3-1)+(xm+3-1)
=(x+1)(xm+3-1)
Với x=-2 ta có:... bn tự thay
b)x6-x4+2x3+2x2=x6-2x5+2x4+2x5-4x4+4x3+x4-2x3+2x2
=x4(x2-2x+2)+2x3(x2-2x+2)+x2(x2-2x+2)
=(x4+2x3+x2)(x2-2x+2)
=[x2(x2+2x+1)](x2-2x+2)
=x2(x+1)2(x2-2x+2)
Với x=-2 bn tự thay nhé h mk bận
5x2 - 4(x2 - 2x + 1) - 5 = 0
=> 5x2 - 4x2 + 8x - 4 - 5 = 0
=> x2 + 8x - 9 = 0
=> x2 + 9x - x - 9 = 0
=> x(x + 9) - (x + 9) = 0
=> (x + 9)(x - 1) = 0
=> x + 9 = 0 => x = -9
hoặc x - 1 = 0 = > x = 1
Vậy x = -9, x = 1
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\left(5x^2-5\right)-4\left(x^2-2.1.x+1^2\right)=0\)
\(5\left(x^2-1\right)-4\left(x-1\right)^2=0\)
\(5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)\left(x-1\right)=0\)
\(\left[5\left(x+1\right)-4\left(x-1\right)\right]\left(x-1\right)=0\)
\(\left(5x+5-4x+4\right)\left(x-1\right)=0\)
\(\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-9\\x=1\end{cases}}.\)
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
a: Ta có: \(25x^2\left(x-y\right)-x+y\)
\(=\left(x-y\right)\left(25x^2-1\right)\)
\(=\left(x-y\right)\left(5x-1\right)\left(5x+1\right)\)
b: Ta có: \(16x^2\left(z^2-y^2\right)-z^2+y^2\)
\(=\left(z^2-y^2\right)\left(16x^2-1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left(4x-1\right)\left(4x+1\right)\)
c: Ta có: \(x^3+x^2y-x^2z-xyz\)
\(=x^2\left(x+y\right)-xz\left(x+y\right)\)
\(=x\left(x+y\right)\left(x-z\right)\)
\(2x^2-x-15\)
\(=\left(x-3\right)\left(x+\frac{5}{2}\right)\)
\(x^4+x^2+1\)
a) \(2x^2-x-15=2x^2-6x+5x-15=2x\left(x-3\right)+5\left(x-3\right)=\left(x-3\right)\left(2x-5\right)\)
a,\(x^5+x-1=x^5+x^4-x^2-x^4-x^3+x+x^3+x^2-1=\left(x^5+x^4-x^2\right)-\left(x^4+x^3-x\right)+\left(x^3+x^2-1\right)=x^2\left(x^3+x^2-1\right)+x\left(x^3+x^2-1\right)+\left(x^3+x^2-1\right)=\left(x^2+x+1\right)\left(x^3+x^2-1\right)\)b,\(y\left(y-2\right)-5=y^2-2y-5=\left(y^2-2y+1\right)-6=\left(y-1\right)^2-\sqrt{6^2}=\left(y-1-\sqrt{6}\right)\left(y-1+\sqrt{6}\right)\)
\(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
Đề sai rồi bạn phải + 2 chứ