Cho P=(\(\dfrac{-2}{3}\)\(^{x^2y^3z^2}\) ).(\(\dfrac{-1}{2}xy\))^3.\(\left(xy^2z\right)^2\)
a) Thu gọn, tìm bậc, hệ số của P
b)Tìm giá trị của các biến để P≤0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{a^3}{b^3}\cdot x^3\cdot y^9\cdot z^6\cdot\dfrac{b^4}{a^2}\cdot x^6y^4z^2=ab\cdot x^9y^{13}z^8\)
Hệ số là ab
Phần biến là \(x^9;y^{13};z^8\)
Bậc là 30
\(A=\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0\)
\(a)A=\dfrac{2020.2021.2020}{2021.2020.2021}.\left(x.x^3\right).\left(y^5.y\right).\left(z.z^2\right)\Leftrightarrow A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(b)A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(\Rightarrow\text{A có hệ số là:}\dfrac{2020}{2021}\)
\(\text{Phần biến là:}\left(x,y,z\right)\)
\(c)\text{Xét A ta có:}\dfrac{2020}{2021}< 0;x^4,y^6\text{ luôn }< 0\)
\(\Rightarrow\dfrac{2020}{2021}x^4.y^6>0\Rightarrow\text{ Nếu }z< 0\Rightarrow A\le0\text{ và z có số mũ là:3}\)
\(\text{Chẳng hạn:}\left(-\right).\left(-\right).\left(-\right)=\left(-\right).< 0\Rightarrow z\text{ phải }\ge0\text{ thì }A\ge0\)
\(\Rightarrow Z\in N\)
a: \(=\dfrac{1}{3}\cdot24\cdot4\cdot x^2\cdot xy\cdot xy=32x^4y^2\)
Phần biến là \(x^4;y^2\)
Bậc là 6
Hệ số là 32
b: \(=xy^2\cdot\left(-2\right)xy^3=-2x^2y^5\)
Phần biến là \(x^2;y^5\)
Bậc là 7
Hệ số là -2
c: \(=\dfrac{1}{5}x^2y^3z\cdot\dfrac{1}{8}x^3y^3z^3=\dfrac{1}{40}x^5y^6z^4\)
PHần biến là \(x^5;y^6;z^4\)
Bậc là 15
Hệ só là 1/40
d: \(=\dfrac{1}{3}\cdot ab\cdot xy\cdot a^2\cdot x^2y^4=\dfrac{1}{3}a^3b\cdot x^3y^5\)
Phần biến là \(x^3y^5\)
Hệ số là \(\dfrac{1}{3}a^3b\)
Bậc là 8