K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2015

dễ ợt

s=2010(1+20100+2010^3(1+2010)+............+2010^2009(1+2010)

s=2010.2011+2010^3.2011+.........+2010^2009.2011

s=2011(2010+2010^3+.......+2010^2009) chia hết cho 2011

2 tháng 5 2015

 \(S=\left(2010+2010^2\right)+\left(2010^3+2010^4\right)+...+\left(2010^{2009}+2010^{2010}\right)\)

\(S=2010\left(2010+1\right)+2010^3\left(2010+1\right)+...+2010^{2009}\left(2010+1\right)\)

 \(S=2011.\left(2010+2010^3+2010^5+...+2010^{2009}\right)\) chia hết cho 2011

5 tháng 12 2021

cái dấu ^ là dấu nhân đúng ko ??

5 tháng 12 2021

dạ số mũ á bạn

 

31 tháng 10 2021

\(10^{28}+8\)

\(=1000...0000+8\)

         28 chữ số 0

\(=100...008\)

         27 chữ số 0

Ta có 1+0+0+...+0+8=9\(⋮\)9=>1028+9\(⋮\)9

vậy........

Ta có : 

\(n^2 - 1 = (n-1)(n+1)\)

\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp 

\(=> (n-1)(n+1) \) chia hết cho \(8\)    \((1)\)

Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)

Với \(n= 3k + 1\)

\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3 

Với \(n = 3k+2\)

\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3

- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)

\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)

8 tháng 12 2019

\(3^{n+2}+3^n=3^n.3^2+3^n=3^n.9+3^n=3^n\left(9+1\right)=10.3^n⋮10\)

7 tháng 10 2021

a)Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

b)

Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có

2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.

.Vậy  nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.

Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.

3 tháng 1 2019

\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)

\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(=3+2^2.3+...+2^{2020}.3⋮3\)

     VẬY \(S⋮3\)

Trả lời :...........................................

SCSH: (2021 - 1) : 1 = 2020

Tổng: (2021 + 1) : 2 = 1011

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

Ta có: n2 + n + 1 = n(n + 1) + 1

Ta có n(n + 1) là tích của hai số tự nhiên liên tiếp nên tận cùng bằng 0, 2, 6. Suy ra n(n + 1) + 1 tận cùng bằng 1, 3, 7 nên n2 + n + 1 không chia hết cho 5.

TRẢ LỜI:

Ta có: n2 + n + 1 = n(n + 1) + 1

Ta có n(n + 1) là tích của hai số tự nhiên liên tiếp nên tận cùng bằng 0, 2, 6. Suy ra n(n + 1) + 1 tận cùng bằng 1, 3, 7 nên n2 + n + 1 không chia hết cho 5.

Hok tốt

4 tháng 10 2016

Ta có 

kết quả là:

Nếu n + 3 là số chẵn

=> ( n + 3 ) ( n + 6 ) chia hết cho 2

Nếu n + 6 là số chẵn

=> ( n + 3 ) ( n + 6 ) chia hết cho 2

4 tháng 10 2016

Nếu n+3 là số chẵn thì\(\Rightarrow\)(n+3)(n+6) chia hết cho 2

Nếu n+6 là số chẵn thì (n+3)(n+6) chia hết cho 2

tk tôi nha