chứng tỏ rằng mọi phân số có dạng \(\frac{n}{n+1}\) ( với n thuộc N, n bằng 0) đều là phân số tối giản)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng tỏ rằng mọi phân số có dạng \(\frac{n}{n+1}\)(vơi n thuộc N, n khác 0) đều là phân số tối giản
Gọi ƯCLN của n và n + 1 là d (d \(\in\)N và d \(\ge\)1).
Khi đó n \(⋮\)d và n + 1\(⋮\)d. Suy ra n + 1 - n \(⋮\)d => 1 \(⋮\)d
Vậy d = 1
Như vậy phân số \(\frac{n}{n+1}\)là phân số tôi giản.
Gọi ƯCLN(n+2018;n+2019) = a
Có n+2018 chia hết cho a
và n+2019 chia hết cho a
=> (n+2019)-(n+2018) chia hết cho a
=> 1 chia hết cho a
=> a = 1
ƯCLN(n+2018;n+2019) = 1
=> \(\dfrac{n+2018}{n+2019}\) là phân số tối giản
Gọi ƯCLN ( n+2015 ; n+2016 ) = d
=> n+2015 chia hết cho d; n+2016 chia hết cho d
=> ( n+2016 ) - ( n+2015 ) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ( n+2015 ; n+2016 ) = 1 => $\frac{n+2015}{n+2016}$ là PSTG ( ĐPCM )
Ta thấy : n là số tự nhiên (1)
Và : 2015;2016 là hai số tự nhiên liên tiếp (2)
Từ (1) (2) ta suy ra được n+2015 và n+2016 là hai số tự nhiên liên tiếp
Hai số tự nhiên liên tiếp khi viết dưới dạng phân số thì luôn luôn là phân số tối giản
Vậy: \(\frac{n+2015}{n+2016}\) là phân số tối giản
Đặt \(n+1;2n+3=d\)
\(n+1⋮d\Rightarrow2n+2\)(1)
\(2n+3⋮d\)(2)
Lấy 2 - 1 ta có :
\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
Gọi ƯCLN (n;n+1) = d ( d \(\in\)N*)
\(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
tài năng quá mấy bạn