K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 

28 tháng 3 2020

D E F M N H

lưu ý hình ảnh chỉ mang t/c minh họa  ; vui lòng k vẽ theo

xét \(\Delta DHM\)VÀ \(\Delta DHN\)

DH-CẠNH CHUNG

\(\widehat{HDM}=\widehat{HDN}\left(gt\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^o\left(gt\right)\)

=> \(\Delta DHM=\Delta DHN\)

=>HM = HN.

b) xét tam giác DEF cân tại D

=> \(\widehat{DEF}=\widehat{DFE}\)(T/C TAM GIÁC CÂN )

=>\(\widehat{MEH}=\widehat{NFH}\)

XÉT \(\Delta MEH\)VÀ \(\Delta NFH\)

\(\widehat{EMH}=\widehat{FNH}=90^o\left(gt\right)\)

\(\widehat{MEH}=\widehat{NFH}\left(cmt\right)\)

\(HM=HN\left(cmt\right)\)

=> \(\Delta MEH=\Delta NFH\)

D E F M N H

a) Xét 2 tam giác vuông: \(\Delta MDH\)và \(\Delta NDH\)có:

\(\widehat{MDH}=\widehat{NDH}\left(gt\right)\)

\(HD\)cạnh chung

\(\Rightarrow\Delta MDH=\Delta NDH\left(ch-gn\right)\)

\(\Rightarrow HM=HN\)( 2 cạnh tương ứng)

b) Ta có: \(DE=DF\)( vì  tam giác DEF cân tại D )

Hay \(DM+ME=DN+NF\)

mà \(DM=DN\)( 2 cạnh tương ưng của tam giác MDH và tam giác NDH )

\(\Rightarrow ME=NF\)

Xét \(\Delta HME\)và \(\Delta HNF\)có:

\(\widehat{HME}=\widehat{HNF}\left(=90^o\right)\)

\(ME=NF\left(cmt\right)\)

\(\widehat{MEH}=\widehat{NFH}\) ( vì tam giác DEF cân tại D)

\(\Rightarrow\Delta HME=\Delta HNF\left(g-c-g\right)\)

hok tốt!!

11 tháng 5 2022

a, Xét Δ DEF vuông tại D, có :

\(EF^2=ED^2+DF^2\) (định lí Py - ta - go)

=> \(EF=13\left(cm\right)\)

b, Xét Δ EDH và Δ ENH, có :

\(\widehat{EDH}=\widehat{ENH}=90^o\)

EH là cạnh chung

\(\widehat{DEH}=\widehat{NEH}\) (EH là tia phân giác \(\widehat{EDN}\))

=> Δ EDH = Δ ENH (g.c.g)

11 tháng 5 2022

a)Áp dụng định lí Pitago

DE2 + DF2 = EF2

hay 52 + 122 = EF2

25 + 144 = \(\sqrt{169}\)

EF = 13cm

b) Xét △ EDH và △ ENH có

EH là cạnh chung

\(\widehat{FDH}=\widehat{FNH}\)

\(\widehat{DEH}=\widehat{NEH}\)

Vậy  △ EDH = △ ENH  (c-g-c)

a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có

DE=DF

DH chung

Do đó:ΔDHE=ΔDHF

b: EF=8cm nên HE=4cm

=>DH=3cm

c: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

\(\widehat{MDH}=\widehat{NDH}\)

Do đó:ΔDMH=ΔDNH

Suy ra: HM=HN

7 tháng 3 2022

undefined

\(\text{a)}\text{Vì }\Delta DEF\text{ cân tại D}\)

\(\Rightarrow DE=DF\)

\(\widehat{E}=\widehat{F}\)

\(\text{Xét }\Delta DHE\text{ và }\Delta AHF\text{ có:}\)

\(DE=DF\left(cmt\right)\)

\(BH\text{ chung}\)

\(\widehat{E}=\widehat{F}\left(cmt\right)\)

\(\Rightarrow\Delta DHE=\Delta DHF\left(c-g-c\right)\)

\(\Rightarrow EH=HF\text{(hai cạnh tương ứng)}\)

\(\text{b)}\text{Vì }EH=HF\left(cmt\right)\)

\(\Rightarrow EH=\dfrac{EF}{2}=\dfrac{8}{2}=4\left(cm\right)\)

\(\text{Xét }\Delta DEH\text{ có:}\)

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH^2=DE^2-EH^2\text{(định lí Py ta go đảo)}\)

\(\Rightarrow DH^2=5^2-4^2=25-16=9\left(cm\right)\)

\(\Rightarrow DH=\sqrt{9cm}=3\left(cm\right)\)

\(\text{c)Xét }\Delta HMD\text{ và }\Delta HND\text{ có:}\)

\(DH\text{ chung}\)

\(\widehat{D_1}=\widehat{D_2}\left(\Delta DHE=\Delta DHF\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^0\)

\(\Rightarrow\Delta HMD=\Delta HND\left(ch-cgv\right)\)

\(\Rightarrow HM=HN\text{( hai cạnh tương ứng)}\)