K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

a: Xét ΔADB và ΔADC có

\(\widehat{B}=\widehat{C}\)

\(\widehat{BAD}=\widehat{CAD}\)

Do đó: ΔADB\(\sim\)ΔADC

b: Ta có: BC=8cm

=>BD=CD=4cm

=>\(DB=DC=\sqrt{6^2-4^2}=2\sqrt{5}\left(cm\right)\)

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

góc CBD=góc ABD

=>góc AID=góc ADI

=>ΔAID cân tại A

5 tháng 4 2023

a) Do \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

\(BC^2=6^2+8^2\)

\(BC^2=36+64\)

\(BC^2=100\)

\(BC=\sqrt{100}=10\left(cm\right)\)

Do BD là phân giác của \(\Delta ABC\) áp dụng định lý đường phân giác trong tam giác ta có:

\(\dfrac{BA}{BC}=\dfrac{AD}{CD}\) hay \(\dfrac{6}{10}=\dfrac{AD}{CA-AD}\) 

\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\)

\(\Leftrightarrow6\left(8-AD\right)=10AD\)

\(\Leftrightarrow48-6AD=10AD\)

\(\Leftrightarrow48=10AD+6AD\)

\(\Leftrightarrow48=16AD\)

\(\Leftrightarrow AD=\dfrac{48}{16}=3\left(cm\right)\)

15 tháng 5 2017

B A C H D E F

a. C/m tam giác HBA đồng dạng tam giác ABC

Xét tam giác HBA và tam giác ABC có: 

\(\widehat{BHA}=\widehat{BAC}\)= 90( gt)

\(\widehat{ABC}\)góc chung

Suy ra: \(\Delta HBA\approx\Delta ABC\left(g.g\right)\)

b. 

Áp dụng tính chất đường phân giác AD vào tam giác ABC ta được:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)

\(\Rightarrow\)BD = \(\frac{3}{4}DC\)

Tương tự: \(\frac{AE}{BE}=\frac{AD}{BD}=\frac{AD}{\frac{3DC}{4}}=\frac{4AD}{3DC}\)

\(\frac{FA}{FC}=\frac{AD}{DC}\)

Ta thấy: \(\frac{4AD}{3DC}>\frac{AD}{DC}\)nên \(\frac{AE}{BE}>\frac{FA}{FC}\)

hay AE.FC > BE. FA(đpcm)

GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP!!! TRÌNH BÀY CÁC BƯỚC C/M NHÉ!Câu 13: Cho hình thang ABCD (BC // AD) có C=3D Câu 14: Cho hình thang cân ABCD có BC = 3cm. Đường chéo DB vuông góc với cạnh bên BC; DB là tia phân giác của góc D. Khi đó độ dài DC bằng? Câu 15: Cho tam giác ABC vuông ở A, AB    6cm;  AC=8cm. Gọi M, N lần lượt là trung điểm của AB và AC. Khi đó độ dài MN bằng?Câu 16: Cho tam giác ABC có chu vi bằng 48cm....
Đọc tiếp

GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP!!! TRÌNH BÀY CÁC BƯỚC C/M NHÉ!

Câu 13: Cho hình thang ABCD (BC // AD) có C=3D 
Câu 14: Cho hình thang cân ABCD có BC = 3cm. Đường chéo DB vuông góc với cạnh bên BC; DB là tia phân giác của góc D. Khi đó độ dài DC bằng? Câu 15: Cho tam giác ABC vuông ở A, AB    6cm;  AC=8cm. Gọi M, N lần lượt là trung điểm của AB và AC. Khi đó độ dài MN bằng?
Câu 16: Cho tam giác ABC có chu vi bằng 48cm. Ba đường trung tuyến AD;  BE;  CF. Khi đó chu vi của tam giác DEF bằng?
Câu 17: Cho hình bình hành ABCD có A-B=50. Khi đó góc D có số đo là?
Câu 18: Cho hình vẽ bên, biết AD=24cm; BE=  32cm. Khi đó độ dài của CH bằng? 
Câu 19: Trong các câu sau, câu nào Sai?Hình bình hành có 2 góc có số đo là? 
Câu 20: Cho hình bình hành ABCD có A=120 độ;  AB=8cm. Gọi I là trung điểm của CD, biết AI=4cm, khi đó độ dài của đường chéo AC bằng?

0
8 tháng 4 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta BHD\)vuông và \(\Delta CKD\)vuông có: \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

BD = CD (AD là đường trung tuyến của \(\Delta ABC\))

=> \(\Delta BHD\)vuông = \(\Delta CKD\)vuông (ch.gn) (đpcm)

b/ Ta có \(\Delta BHD\)\(\Delta CKD\)(cmt) => BH = CK (hai cạnh tương ứng)

và AB = AC (\(\Delta ABC\)cân tại A)

=> AB - BH = AC - CK

=> AH = AK => \(\Delta AHK\)cân tại A (đpcm)

c/ Ta có \(\Delta AHK\)cân tại A (cmt) => \(\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\)(1)

và \(\Delta ABC\)cân tại A (gt) => \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{B}\)ở vị trí đồng vị => HK // BC (đpcm)

d/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

BD = CD (AD là đường trung tuyến của \(\Delta ABC\))

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) => \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng) => AD là đường phân giác của \(\Delta ABC\)(đpcm)

e/ Ta có \(\Delta ADB\)\(\Delta ADC\)(cmt) =>\(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)(hai góc kề bù)

=> \(\widehat{ADB}=\widehat{ADC}=90^o\)=> AD \(\perp\)BC

và AD là đường trung tuyến của \(\Delta ABC\)

=> AD là đường trung trực của BC

Mà HK // BC

=> AD là đường trung trực của HK (đpcm)