Tìm y biết:
a) y + 10,5 = 25,5 - 3,5
b) y x 10 = 1,5 : 0,01
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x= ( 42 - 4,2 . 10 + 76 : 7,6 ) : ( 0,01 . 0,1 )
=(42-42+10):(0,001)
=10:0,001=10000
y= ( 689,7 + 0,3 ) : ( 7,4 : 0,2 - 2,2 - 1,5 )
=690:33,3=20,(720)
Vì 10000 >20,(720) nên x>y
Vậy x>y
Ta có : \(x=\left(42-4,2.10+76:7,6\right):\left(0,01.0,1\right)\)
\(=10:0,001=10000\)
\(y=\left(689,7+0,3\right):\left(7,4:0,2-2,2-1,5\right)\)
\(=20,\left(720\right)\)
Vì \(10000>20,\left(720\right)\)
\(\Rightarrow x>y\)
\(x=\left(42-4,2.10+76.7,6\right):\left(0,01.0,1\right)\)
\(y=\left(689,7+0,3\right):\left(7,4:0,2-2,2-1,5\right)\)
\(Ta\) \(có:\)
\(x=\left(42-4,2.10+76.7,6\right):\left(0,01.0,1\right)\)
\(x=\left(42-42+76.7,6\right):\left(0,01.0,1\right)\)
\(x=\left(0+76.7,6\right):\left(0,01.0,1\right)\)
\(x=\left(577,6\right):\left(0,001\right)\)
\(x=577600\)
\(y=\left(689,7+0,3\right):\left(7,4:0,2-2,2-1,5\right)\)
\(y=\left(689,7+0,3\right):\left(37-3,7\right)\)
\(y=\left(690\right):\left(33,3\right)\)
\(y=20,\overline{720}\)
*** So sánh :
Vì \(577600>20,\overline{720}\) nên \(x>y\)
Hay \(x=\left(42-4,2.10+76.7,6\right):\left(0,01.0,1\right)\) \(>\) \(y=\left(689,7+0,3\right):\left(7,4:0,2-2,2-1,5\right)\)
Lời giải:
a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$
$2x=10$
$x=5$
$\Rightarrow y=x=5$
Vậy $(x,y)=(5,5)$
b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$
$5x=180$
$x=36$
$y=x=36$
Vậy $(x,y)=(36,36)$
c. Thay $y=2x$ vào điều kiện đầu thì:
$3x+5.2x=13$
$13x=13$
$x=1$
$y=2x=2$
Vậy $(x,y)=(1,2)$
a) Ta có: x=y
mà x+y=10
nên \(x=y=\dfrac{10}{2}=5\)
b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
a) y = 11,5
b) y = 15
a, y= (25,5 -3,5 )-10,5 =11,5
b,y= (1,5 :0,01) ; 10=15