trong 2 số tự nhiên liên tiếp , có 1 số chia hết 2
làm giúp mình nha
giải dễ hiểu nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
a) Gọi hai số tự nhiên liên tiếp là a , a + 1
Nếu a chia hết cho 2 thì bài toán đã được giải
Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán đã được giải
Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3
Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3
Bài này mik học rồi nên mik chắc chắn đúng luôn
a) Ta có: 2 STN liên tiếp là: B(2) + 1 và B( 2) + 2 ( vì B(2) thay thế cho 0 )
Vì B(2) chia hết cho 2 và 2 chia hết cho 2
=> B(2) + 2 chia hết cho 2
b) Ta có: 3 STN liên tiếp là: B(3) + 1; B(3) + 2; B(3) + 3 ( vì B(3) thay thế cho 0 )
Vì B(3) chi hết cho 3 và 3 chia hết cho 3
=> B(3) + 3 chia hết cho 3
^_^ Vũ Dương Bách
a) Gọi 2 số tự nhiên liên tiếp là n, n + 1 ( n thuộc N)
Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ.
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2.
b) Gọi 3 số tự nhiên liên tiếp là n, n + 1, n + 2 (n thuộc N)
Ta có:
n + (n + 1) + (n + 2) = 3n + 3 chia hết cho 3 (vì 3n và 3 đều chia hết cho 3 nên tổng của chúng chia hết cho 3)
a) Trong 2 số tự nhiên liên tiếp chắc rằng sẽ có 1 số chẵn và 1 số lẻ Suy ra : số chẵn sẽ chia hết cho 2
mk chỉ suy luận được câu a thôi
Câu 1:
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2.
Xét chia hết cho 2:
th1: nếu a chẵn thì a chia hết cho 2
th2: nếu a lẻ thì a+1 chẵn chia hết cho 2
Xét chia hết cho 3:
th1:a chia hết cho 3
th2:a chia 3 dư 1 thì a+2 chia hết cho 3
th3:achia 3 dư 2 thì a+1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2, 3
Caau2:
ta đã biết trong 3 stn liên tiếp thì có một số chia hết cho 2, một số chia hết cho 3
mà số chia hết cho cả 2 và 3 thì chia hết cho 6
gọi tích 3 số tự nhiên liên tiếp là A
A chia hết cho 2
Achia hết cho 3
vậy A chia hết cho 6
a)Gọi 3 số tự nhiên liên tiếp là:a;a+1;a+2
Tổng 3 số tự nhiên liên tiếp là:S=a+a+1+a+2=3a+3
Vì 3 chia hết cho 3 nên 3a chia hết cho 3=>3a chia hết cho 3
hay S chia hết cho 3
Vậy _________________________
Bạn tự kết luận nhé!
Câu b tương tự chỉ là nó không chia hết cho 4 thôi!
a)Ta gọi 3 số tự nhiên liên tiếp là:a,a+1,a+2(a thuộc N)
Ta có:a+(a+1)+(a+2)=3a+3 chia hết cho 3 vì 3a chia hết cho 3,3 chia hết cho a
Suy ra tổng 3 số tự nhiên liên tiếp chia hết cho 3.
b)Tương tự như câu a
1)a)
gọi 3 số đó là a;a+1:a+2
ta có: a+(a+1)+(a+2)=3a+3
mà 3 chia hết cho 3 nên 3a+3 chia hết cho3
b) goij4 số đó là a;a+1;a+2;a+3;a+4
ta có tổng sẽ là: 4a+10
mà 10 ko chia hết cho 4 nên tổng 4 số trên ko chia hết cho 4
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Ta có : \(n;n+1\)
Thì \(n\)chẵn và \(n+1\)lẻ
Hoặc : \(n\)lẻ và \(n+1\)chẵn
Mà số chẵn thì đi hết cho 2
=> trong 2 số tự nhiên liên tiếp , có 1 số chia hết 2 ( đpcm )
Vì trong 2 STN liên tiếp phải có 1 số chẵn chia hết cho 2
VD : Nếu số đầu lẻ thì số sau chẵn => chia hết cho 2
Nếu số đầu chẵn => chia hết cho 2