Cho tam giác ABC. Gọi M là trung điểm BC, I là trung điểm AM. Tia BI cắt AC tại D
a) Chứng minh rằng: AD=1/2 DC
b) Chứng minh rằng: ID=1/4 BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
a) Có BD//ME hay ID//ME
Xét ΔAME, có :
I là trung điểm của AM (gt), ID//ME (cmt)
=> D là trung điểm của AE
Hay AD=ED. (1)
Xét ΔDBC, có :
M là trung điểm của BC(gt), BD//ME(gt)
=> E là trung điểm của DC
Hay DE=CE (2)
Từ (1) và (2) => AD=ED=CE. ( đpcm)
b)
Xét ΔBDC, có
BM=CM(cm câu a), DE=CE(cm câu a)
=>ME là đường trung bình của ΔBDC
=>ME= 1/2 BD. (*)
Xét ΔAME, có:
AI=IM (cm câu a), AD=DE(cm câu a)
=> ID là đường trung bình của ΔAME
=> ID= 1/2 ME (**)
Từ (*) và (**) => ID= 1/2ME, mà ME=1/2BD
=> ID=1/2 . 1/2 BD
=> ID = 1/4 BD (đpcm)
a: Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DC
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//BD và \(ME=\dfrac{1}{2}BD\)
b: Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: D là trung điểm của AE
a) Xét tam giác BDC có:
M là trung điểm BC(gt)
E là trung điểm DC(DE=EC)
=> ME là đường trung bình
=> ME//BD
b) Xét tam giác AME có:
ME//BD
D là trung điểm AE(AD=DE)
=> I là trung điểm AM
c) Xét tam giác AME có:
D là trung điểm AE(AD=DE)
I là trung điểm AM(cmt)
=> ID là đường trung bình
\(\Rightarrow ID=\dfrac{1}{2}ME\)
Mà \(ME=\dfrac{1}{2}BD\)(do ME là đường trung bình tam giác BDC)
\(\Rightarrow ID=\dfrac{1}{2}.\dfrac{1}{2}BD=\dfrac{1}{4}BD\)
a: Xét ΔiAB và ΔICD có
IA=IC
góc AIB=góc CID
IB=ID
=>ΔIAB=ΔICD
b: Xét ΔBAC có
BI,AM là trung tuyến
BI cắt AM tại G
=>G là trọng tâm
=>BG=2/3BI=2/3ID
c: Xét ΔDAC có
DI,AN là trung tuyến
DI cắt AN tại K
=>K là trọng tâm
=>DK=2/3DI=2/3*1/2*DB=1/3DB
BG=2/3BI
=>BG=2/3*1/2BD=1/3BD
BG+GK+KD=BD
=>GK=1/3BD=DK=BG