1. Cho f(x) = ax3 + 4x ( x2 - 1 ) + 8
g(x) = x3 - 4x ( bx + 1) + c - 3
Xác định a, b, c để f(x) = g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
f(x)= ax3+4x(x2-1)+8 = ax3 + 4x3 - 4x + 8 = (a + 4)x3 - 4x + 8
g(x)= x3 - 4x(bx+1) +c-3 = x3 - 4bx2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
\(f\left(x\right)=ax^3+4x\left(x^2-x\right)-4x+8\)
\(f\left(x\right)=ax^3+4x^3-4x^2-4x+11-3\)
\(f\left(x\right)=x^3\left(a+4\right)-4x\left(x+1\right)+11-3\)
Để \(f\left(x\right)=g\left(x\right)\)thì:
\(\Leftrightarrow x^3\left(a+4\right)-4x\left(x+1\right)+11-3\)
\(\Leftrightarrow x^3-4x\left(bx+1\right)+c-3\)
Đến đây tự tìm tiếp a ; b ; c đi nha
Để f(x) = g(x) thì các hạng tử tương ứng phải bằng nhau.
Ta có: f(x) = g(x)
<=> ax3 + 4x(x -1) +8 = x3 -4x(bx +1) +c -3
=> ax3 = x3 => a = 1
4x(x-1) = -4x(bx+1) => x-1 = -(bx+1)
<=> x-1 = -bx-1 => b = -1
8 = c-3 => c = 11
Vậy a = 1; b = -1; c = 11
Ta có: f(x) = ax3 + 4x(x2- x) - 4x + 8
= ax3 +4x3 - 4x2 - 4x + 11 - 3
= x3(a + 4) - 4x(x + 1) + 11 -3
Để f(x)=g(x) thì x3(a + 4) - 4x(x + 1) + 11 -3 = x3- 4x(bx +1)+c - 3
=> \(\left\{{}\begin{matrix}a+4=1\\x+1=bx+1\\c=11\end{matrix}\right.< =>\left\{{}\begin{matrix}a=-3\\b=1\\c=11\\\end{matrix}\right.\)
Vậy a=-3, b=1 và c=11