1, Tìm n bt 5n +7 chia hết cho 3n+2
2, CMR : Nếu 8p - 1 và p là các số nguyên tố thì 8p + 1 là hợp số.
3, cmr : 10^2011 + 8 chia hết cho 72.
Ai giúp mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Biết mỗi bài đó thôi
3n+2 chia hết cho 3n+2
=>2.(3n+2)=6n+4 chia hết cho 3n+2
Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2
=>6n+4-(5n+7)=n-3 chia hết cho 3n+2
n-3 chia hết cho 3n+2
=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2
Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2
=> -11 chia hết cho 3n+2
=>3n+2 thuộc Ư(-11)
=>3n+2={1;-1;-11;11}
=>3n={-1;-3;-13;9}
=>n={-1/3;-1;-13/3;3}
Nếu p=2
8p-1=16-1=15 là hợp số trái với đề(TVĐ)
Nếu p=3
8p-1=8.3-1=24-1=23
8p+1=8.3+1=24+1=25 là hợp số
Nếu p>3
TH1:p=3k+1(vì p là số nguyên tố)
8p-1=8.(3k+1)-1=24k+8-1=24k+7
8p+1=8.(3k+1)+1=24k+8+1=24k+9 là hợp số
TH2:p=3k+2
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) chia hết cho 3
Mà p>3
=>8p-1>3
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) là hợp số(TVĐ)
Vậy nếu 8p - 1 và p là SNT thì 8p + 1là hợp số
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
b) Ta có
\(\frac{6n+3}{3n+6}=\frac{6n+12-9}{3n+6}=\frac{2.\left(3n+6\right)-9}{3n+6}=2-\frac{9}{3n+6}\)
3 n + 6 là ước nguyên của 9
\(3n+6=1\Rightarrow n=-\frac{5}{3}\)(loại)
\(3n+6=3\Rightarrow n=-1\)( chọn )
\(3n+6=9\Rightarrow n=1\)( chọn )
\(3n+6=-1\Rightarrow n=-\frac{7}{3}\)( loại )
\(3n+6=-3\Rightarrow n=-3\)( chọn )
\(3n+6=-9\Rightarrow n=-5\)( chọn )
KL : \(n\in\){ 1; -1; -3; -5 }
Ai thấy đúng thì ủng hộ nha!!
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)