K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=2.\frac{49}{100}\)

\(=\frac{49}{50}\)

12 tháng 7 2016

= 2.(1/2.3 + 1/3.4 + ... + 1/99.100)

trong ngoac co cong thuc do, tim hieu di la lam dc

5 tháng 5 2017

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)

\(\frac{2}{1}\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(\frac{2}{1}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{2}{1}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\frac{2}{1}.\frac{49}{100}\)

\(\frac{98}{100}=\frac{49}{50}\)

5 tháng 5 2017

Đặt A = \(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)

 A : 2 =  \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

 A : 2 = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

 A : 2 = \(\frac{1}{2}-\frac{1}{100}\)

 A : 2 = \(\frac{49}{100}\)

    A   = \(\frac{49}{50}\)

2 tháng 2 2020

Đặt tổng trên là A , ta có :

\(\frac{A}{2}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{A}{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{2}=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{98}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)\(\frac{A}{2}=\frac{99}{100}\)

\(A=\frac{99}{100}.2\)

\(A=\frac{99}{50}\)

30 tháng 10 2016

\(S=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{98\times99}+\frac{2}{99\times100}\)

\(S=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)

\(S=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(S=2\times\left(1-\frac{1}{100}\right)\)

\(S=2\times\frac{99}{100}\)

\(S=\frac{99}{50}\)

30 tháng 10 2016

\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{98.99}+\frac{2}{99.100}\)

\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}+\frac{1}{100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{100}\right)\\ S=2.\left(\frac{100}{100}+\frac{-1}{100}\right)\\ S=2.\frac{99}{100}\\ S=\frac{99}{50}\)

11 tháng 8 2019

\(A=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot...\cdot1-\frac{2}{99\cdot100}\)

\(2A=1-\left(\frac{1}{2\cdot3}\cdot\frac{1}{3\cdot4}\cdot\frac{1}{4\cdot5}\cdot...\cdot\frac{1}{99\cdot100}\right)\)

\(2A=1-\left(\frac{1}{2}-\frac{1}{3}\cdot\frac{1}{3}-\frac{1}{4}\cdot\frac{1}{4}-\frac{1}{5}\cdot...\cdot\frac{1}{99}\cdot\frac{1}{100}\right)\)

\(2A=1-\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(2A=1-\frac{49}{100}\)

\(2A=\frac{51}{100}\)

\(A=\frac{51}{100}:2\)

\(A=\frac{51}{200}\)

1 tháng 11 2016

\(\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)

\(=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)

\(=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5..100}\)

\(=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)

1 tháng 11 2016

\(=2\left(\frac{1}{2}-\frac{1}{2.3}\right).2\left(\frac{1}{2}-\frac{1}{3.4}\right)...2\left(\frac{1}{2}-\frac{2}{99.100}\right)\)
\(=2^{89}.\left(\frac{1}{2}.98-\frac{1}{2}+\frac{1}{100}\right)\)

\(=2^{98}.\left(49-\frac{49}{100}\right)\)

= \(\frac{2^{98}.4851}{100}\)

27 tháng 8 2015

Ta thấy: \(1-\frac{2}{n.\left(n+1\right)}=\frac{n.\left(n+1\right)-2}{n.\left(n+1\right)}=\frac{n^2+n-1-1}{n.\left(n+1\right)}=\frac{\left(n^2-1\right)+\left(n-1\right)}{n.\left(n+1\right)}=\frac{\left(n-1\right).\left(n+1\right)+\left(n-1\right)}{n.\left(n+1\right)}=\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\)

Lại có: \(\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right).....\left(1-\frac{2}{99.100}\right)\)

\(=\left(1-\frac{2}{2.\left(2+1\right)}\right).\left(1-\frac{2}{3.\left(3+1\right)}\right).\left(1-\frac{2}{4.\left(4+1\right)}\right).....\left(1-\frac{2}{99.\left(99+1\right)}\right)\)

\(=\frac{\left(2-1\right).\left(2+2\right)}{2.\left(2+1\right)}.\frac{\left(3-1\right).\left(3+2\right)}{3.\left(3+1\right)}.\frac{\left(4-1\right).\left(4+2\right)}{4.\left(4+1\right)}.....\frac{\left(99-1\right).\left(99+2\right)}{99.\left(99+1\right)}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{98.101}{99.100}\)

\(=\frac{1.4.2.5.3.6.....98.101}{2.3.3.4.4.5.....99.100}\)

\(=\frac{\left(1.2.3.....98\right).\left(4.5.6.....101\right)}{\left(2.3.4.....99\right).\left(3.4.5.....100\right)}\)

\(=\frac{1.101}{99.3}\)

\(=\frac{101}{297}\)

10 tháng 6 2015

\(1-\frac{2}{2}.3\) hay là \(1-\frac{2}{2.3}\)