Tìm x biết:
\(\frac{x-1}{65}+\frac{x-3}{63}=\frac{x-5}{61}+\frac{x-7}{59}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{\left(x+1\right)}{65}-1+\frac{\left(x+3\right)}{63}-1=\frac{\left(x+5\right)}{61}-1+\frac{\left(x+7\right)}{59}\)
\(\Leftrightarrow\left(x-66\right).\left(\frac{1}{65}+\frac{1}{63}\right)=\left(x-66\right).\left(\frac{1}{61}+\frac{1}{59}\right)\)
\(\Leftrightarrow\left(x-66\right).\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Rightarrow x=66\)
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
=> \(\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)=\left(\frac{x+5}{61}+1\right)+\left(\frac{x+7}{59}+1\right)\)
=> \(\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
=> \(\left(x+66\right).\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
=> x + 66 = 0
=> x = 0 - 66
=> x = -66
\(\frac{x-1}{65}+\frac{x-3}{63}=\frac{x-5}{61}+\frac{x-7}{59}\)
\(\frac{128x-258}{4095}=\frac{120x-722}{3599}\)
\(\left(128x-258\right)3599=4095\left(120x-722\right)\)
\(=>x=66\)
Ta có :
\(\frac{x+1}{65}+\frac{x+3}{63}< \frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)< \left(\frac{x+5}{61}+1\right)+\left(\frac{x+7}{59}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+5}{61}-\frac{x+7}{59}< 0\)
\(\Leftrightarrow\)\(\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
Vì \(\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
\(\Rightarrow\)\(x+66>0\)
\(\Rightarrow\)\(x>-66\)
Vậy \(x>-66\)
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
<=>\(\frac{x+1}{65}+\frac{x+3}{63}-\frac{x+5}{61}-\frac{x+7}{59}=0\)
<=>\(\frac{x+1}{65}+1+\frac{x+3}{63}+1-\frac{x+5}{61}-1-\frac{x+7}{59}-1=0\)
<=>\(\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
<=>\(\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
Do \(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\)
=>x+66=0
<=>x=-66
Ta có : \(\frac{x-1}{65}+\frac{x-3}{63}=\frac{x-5}{61}=\frac{x-7}{59}\)
\(\Leftrightarrow\left(\frac{x-1}{65}-1\right)+\left(\frac{x-3}{63}-1\right)=\left(\frac{x-5}{61}-1\right)+\left(\frac{x-7}{59}-1\right)\)
\(\Leftrightarrow\frac{x-66}{65}+\frac{x-66}{63}=\frac{x-66}{61}+\frac{x-66}{59}\)
\(\Leftrightarrow\frac{x-66}{65}+\frac{x-66}{63}-\frac{x-66}{61}-\frac{x-66}{59}=0\)
\(\Leftrightarrow\left(x-66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
Mà ; \(\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)\ne0\)
Nên x - 66 = 0
=> x = 66
\(\Rightarrow\frac{x-1}{65}-1+\frac{x-3}{63}-1=\frac{x-5}{61}-1+\frac{x-7}{59}-1\)
\(\Rightarrow\frac{x-66}{65}+\frac{x-66}{63}=\frac{x-66}{61}+\frac{x-66}{59}\)
\(\Rightarrow\frac{x-66}{65}+\frac{x-66}{63}-\frac{x-66}{61}-\frac{x-66}{59}=0\)
\(\Rightarrow x-66=0\).Do\(\frac{x-66}{65}+\frac{x-66}{63}-\frac{x-66}{61}-\frac{x-66}{59}\ne0\)
\(\Rightarrow x=66\)