Chứng mình biểu thức sau không phụ thuộc vào x: 2(x^3+y^3)-3(x^2+y^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn chép lại đề
\(=2\left(x+y\right)\left(x^2-xy-y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2-xy-y^2\right)-3\left(x^2+y^2\right)\)
\(=-x^2-2xy-y^2=-\left(x+y\right)^2=-1\)
vậy biểu thức ko phụ thuộc vào x, y
chúc bn hc tốt
Ta có \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=1-2x^2y^2\)
Tương tự \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^2+y^2-x^2y^2\right)=1-x^2y^2\)
Thế vào ta được
\(2\left(1-x^2y^2\right)-3\left(1-2x^2y^2\right)=2-2x^2y^2-3+6x^2y^2=4x^2y^2-1=\left(2xy\right)^2-1\)
Vậy là nó có phụ thuộc vào biến x,y mà bạn ? đề có sai không
Dũng Lê Trí ơi bạn viết sai rồi \(\left(x^2\right)^3+\left(y^2\right)^3\)phải bằng\(\left(x^2+y^2\right)\left(x^4+y^4-x^2y^2\right)\)
\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3\)
\(=2x^3-2x^3\)
\(=0\)
VẬY BIỂU THỨC TRÊN KO PHỤ THUỘC VÀO BIẾN X,Y
\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3=0\)=> DPCM.
`3xy(4x-2y)-(x-2y)^3-2(4y^3-1)`
`=12x^2y-6xy^2-(x^3-6x^2y+12xy^2-8y^3)-8y^3+2`
`=12x^2y-6xy^2-x^3+6x^2y-12xy^2+8y^3-8y^3+2`
`=-x^3+18x^2y-18xy^2+2` (??????)
Voi x+y=1 ta có:
=2(x+y)(x^2-xy+y^2)-3x^2-3y^2
=2x^2-2xy+2y^2-3x^2-3y^2
= -x^2-2xy-y^2
= -(x+y)2
=-1
Vậy....biểu thức ko phụ thuộc vào x,y ...........