tính \(\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt{2x-1}.\sqrt[3]{5x+3}}{x-1}\) mn giúp mk với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-1+1-\sqrt[3]{2x+1}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{4x}{\sqrt[]{4x+1}+1}+\dfrac{-2x}{1+\sqrt[3]{2x+1}+\sqrt[3]{\left(2x+1\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{4}{\sqrt[]{4x+1}+1}+\dfrac{-2}{1+\sqrt[3]{2x+1}+\sqrt[3]{\left(2x+1\right)^2}}\right)=...\)
\(b=\lim\limits_{x\rightarrow1}\dfrac{4\left(x-1\right)\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4\right)}{5\left(x-1\right)\left(\sqrt[]{4x+5}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{4\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4\right)}{5\left(\sqrt[]{4x+5}+3\right)}=...\)
\(c=\lim\limits_{x\rightarrow-1}\dfrac{\left(2x+3\right)^{\dfrac{1}{4}}+\left(2+3x\right)^{\dfrac{1}{3}}}{\left(x+2\right)^{\dfrac{1}{2}}-1}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{1}{2}\left(2x+3\right)^{-\dfrac{3}{4}}+\left(2+3x\right)^{-\dfrac{2}{3}}}{\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}=3\)
a/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}\sqrt{x^2+1}+\dfrac{2x}{x}+\dfrac{1}{x}}{\dfrac{x}{x}\sqrt[3]{\dfrac{2x^3}{x^3}+\dfrac{x}{x^3}+\dfrac{1}{x^3}}+\dfrac{x}{x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}+2}{\sqrt[3]{2}+1}=+\infty\)
b/ \(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2.1^2-1+1}-\sqrt[3]{2.1+3}}{3.1^2-2}=...\)
c/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{\dfrac{4x^2}{x^2}+\dfrac{x}{x^2}}+x\sqrt[3]{\dfrac{8x^3}{x^3}+\dfrac{x}{x^3}-\dfrac{1}{x^3}}}{x\sqrt[4]{\dfrac{x^4}{x^4}+\dfrac{3}{x^4}}}=\dfrac{2+2}{1}=4\)
\(a=\lim\limits_{x\rightarrow1^+}\dfrac{x^2-x+1}{x^2-1}=\dfrac{1}{0}=+\infty\)
\(b=\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-2+2-\sqrt[3]{8+x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2x}{\sqrt{1+x}+1}-\dfrac{x}{4+2\sqrt[3]{8+x}+\sqrt[3]{\left(8+x\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+x}+1}-\dfrac{1}{4+2\sqrt[3]{8+x}+\sqrt[3]{\left(8+x\right)^2}}\right)=\dfrac{2}{2}-\dfrac{1}{12}=...\)
\(c=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(\sqrt{2x-2}+2\right)}{2\left(x-3\right)\left(\sqrt{x+6}+3\right)}=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x-2}+2}{2\left(\sqrt{x+6}+3\right)}=\dfrac{2+2}{2\left(3+3\right)}=...\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+2}+\sqrt{5x+4}-5}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+2}-2+\sqrt{5x+4}-3}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{2\left(x-1\right)}{\sqrt{2x+2}+2}+\dfrac{5\left(x-1\right)}{\sqrt{5x+4}+3}}{x-1}=\lim\limits_{x\rightarrow1}\left(\dfrac{2}{\sqrt{2x+2}+2}+\dfrac{5}{\sqrt{5x+4}+3}\right)=\dfrac{2}{2+2}+\dfrac{5}{3+3}=...\)
Đề câu b là \(...\sqrt{90-6x}\) hay \(\sqrt{9-6x}\) vậy em? Hình như cái sau mới có lý
\(a=\lim\limits_{x\rightarrow1^+}\dfrac{x\sqrt{x-1}}{\sqrt{x-1}\left(1-\sqrt{x-1}\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{x}{1-\sqrt{x-1}}=1\)
\(b=\lim\limits_{x\rightarrow3}\dfrac{x^2+x-12}{\left(x-3\right)\left(\sqrt{x^2+x}+2\sqrt{3}\right)}=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(\sqrt{x^2+x}+2\sqrt{3}\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{x+4}{\sqrt{x^2+x}+2\sqrt{3}}=\dfrac{7}{\sqrt{12}+2\sqrt{3}}=...\)
\(c=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(x^3-2x^2+4x\right)}{\left(x^2+1\right)\left(x+2\right)}=\lim\limits_{x\rightarrow-2}\dfrac{x^3-2x^2+4x}{x^2+1}=-\dfrac{24}{5}\)
1/ \(\lim\limits_{x\rightarrow0^-}\left(\dfrac{x-2}{x^3}\right)=\lim\limits_{x\rightarrow0^-}\dfrac{2-x}{-x^3}=\dfrac{2}{0}=+\infty\)
2/ \(\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^3-x^2\right)^{\dfrac{1}{2}}}{\left(x-1\right)^{\dfrac{1}{2}}+1-x}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^3-x^2\right)^{-\dfrac{1}{2}}.\left(3x^2-2x\right)}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}-1}=0\)
3/ \(\lim\limits_{x\rightarrow1^+}\dfrac{1-\left(x^2+x+1\right)}{x^3-1}=\dfrac{1-3}{0}=-\infty\)
4/ \(\lim\limits_{x\rightarrow-\infty}\left(-\infty-\sqrt[3]{1+\infty}\right)=-\left(\infty+\infty\right)=-\infty?\) Cái này ko chắc :v
\(=\lim\limits_{x->1}\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{3x+1}-2-2\left(\sqrt[3]{2x-1}-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x-2\right)}{\dfrac{3x+1-4}{\sqrt{3x+1}+2}-2\cdot\dfrac{2x-1-1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-2\right)}{\dfrac{3}{\sqrt{3x+1}+2}-\dfrac{4}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}}\)
\(=\dfrac{1-2}{\dfrac{3}{\sqrt{3+1}+2}-\dfrac{4}{\sqrt[3]{\left(2\cdot1-1\right)^2}+\sqrt[3]{2\cdot1-1}+1}}\)
\(=-1:\dfrac{-7}{12}=\dfrac{12}{7}\)
1/ \(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-2+2-\sqrt[3]{8-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2x}{\sqrt{1+x}+1}+\dfrac{x}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+x}+1}+\dfrac{1}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}\right)=\dfrac{13}{12}\)
2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-2-\left(\sqrt{x+3}-2\right)}{\left(x-1\right)\left(x-2\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{x-1}{\sqrt{x+3}+2}}{\left(x-1\right)\left(x-2\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{1}{\sqrt{x+3}+2}}{x-2}=\dfrac{1}{6}\)
3/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-\sqrt{5-x^2}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-2+2-\sqrt{5-x^2}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{\left(x^2-1\right)}{\sqrt[3]{\left(x^2+7\right)^2}+2\sqrt[3]{x^2+7}+4}+\dfrac{x^2-1}{2+\sqrt{5-x^2}}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\left(\dfrac{1}{\sqrt[3]{\left(x^2+7\right)^2}+2\sqrt[3]{x^2+7}+4}+\dfrac{1}{2+\sqrt{5-x^2}}\right)=\dfrac{1}{3}\)
4/ \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-\sqrt[3]{8x+43}}{2x^2+3x-2}=\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-3-\left(\sqrt[3]{8x+43}-3\right)}{\left(2x-1\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\dfrac{x+2}{\sqrt{x+11}+3}-\dfrac{8\left(x+2\right)}{\sqrt[3]{\left(8x+43\right)^2}+3\sqrt[3]{8x+43}+9}}{\left(2x-1\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\dfrac{1}{\sqrt{x+11}+3}-\dfrac{8}{\sqrt[3]{\left(8x+43\right)^2}+3\sqrt[3]{8x+43}+9}}{2x-1}=\dfrac{7}{270}\)
5/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-\sqrt[m]{1+bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-1-\left(\sqrt[m]{1+bx}-1\right)}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1}-\dfrac{bx}{\sqrt[m]{\left(1+bx\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1}-\dfrac{b}{\sqrt[m]{\left(1+bx\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}\)
\(=\dfrac{a}{n}-\dfrac{b}{m}\)
6/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-1}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-\sqrt{1+4x}+\sqrt{1+4x}-1}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\left(\sqrt[3]{1+6x}-1\right)+\sqrt{1+4x}-1}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\dfrac{6x}{\sqrt[3]{\left(1+6x\right)^2}+\sqrt[3]{1+6x}+1}+\dfrac{4x}{\sqrt{1+4x}+1}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{6\sqrt{1+4x}}{\sqrt[3]{\left(1+6x\right)^2}+\sqrt[3]{1+6x}+1}+\dfrac{4}{\sqrt{1+4x}+1}\right)=4\)
\(\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt[]{2x-1}\sqrt[3]{5x+3}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{2-2\sqrt[]{2x-1}+2\sqrt[]{2x-1}-\sqrt[]{2x-1}.\sqrt[3]{5x+3}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{2\left(1-\sqrt[]{2x-1}\right)+\sqrt[]{2x-1}\left(2-\sqrt[3]{5x+3}\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{4\left(x-1\right)}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}\left(x-1\right)}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(-\dfrac{4}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}\right)\)
\(=-\dfrac{4}{1+1}-\dfrac{5\sqrt[]{1}}{4+4+4}=-\dfrac{29}{12}\)