Cho tam giác ABC vuông tại A có AB=17cm Góc B=40 độ.tính góc C ,AC , BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , BD là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\) \(\widehat{ABC}=\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.40^o=20^o\)
b , BD là phân giác của \(\widehat{ABC}\) \(\Rightarrow\) \(\widehat{ABD}=\widehat{EBD}\)
Xét ΔABD và ΔEBD có :
BD chung ; \(\widehat{ABD}\) \(=\) \(\widehat{EBD}\); AB = EB ( gt )
\(\Rightarrow\) ΔABD = ΔEBD ( c.g.c )
\(\Rightarrow\) \(\widehat{BAD}\) \(=\) \(BED\) ( đpcm )
\(\Rightarrow\) \(\widehat{BED}=90^o\) \(\Rightarrow\) \(DE\) ⊥ \(BC\) ( đpcm )
c , Xét 2 tam giác vuông : ΔABC và ΔEBF có :
\(\widehat{B}\) chung ; AB = BE ( gt )
\(\Rightarrow\) ΔABC = ΔEBF ( cgv - gn ) ( đpcm )
d , Xét ΔBCF có FE , CA là đường cao , FE ∩ CA tại D
\(\Rightarrow\) D là trực tâm ⇒ BD ⊥ CF
Mà BD ⊥ CK ( gt )
\(\Rightarrow\) C, K, F thẳng hàng ( đpcm )
áp dụng công thức hàm số lượng giác trong tam giác vuông ta có
\(tanC=\frac{AB}{AC}\)
=>\(AC=\frac{AB}{tanC}=\frac{6}{tan\left(30\right)}\approx10,3923cm\)
=> BC = \(\sqrt{AB^2+AC^2}=12cm\)
Vậy ....
mk mới lớp 8 làm như vậy cũng chưa chắc cho lắm , bạn thông cảm nha ...
1.
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Mà \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{A}+\widehat{C}+\widehat{C}=180^0\)
\(\widehat{A}=180^0-2.65^0\)
\(\widehat{A}=50^0\)
2.
Áp dụng định lý pitago, ta có:
\(DF^2=DE^2+EF^2\)
\(\Rightarrow EF=\sqrt{DF^2-DE^2}=\sqrt{17^2-8^2}=\sqrt{225}=15cm\)
Ta có:
\(DF>EF>DE\)
\(\Rightarrow\widehat{E}>\widehat{D}>\widehat{F}\)
Tam giác ABC vuông tại A:
\(tanB=\frac{AC}{AB}\Rightarrow AC=\tan B.AB=\tan40^o.17\approx14,265cm\)
\(\cos B=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\cos B}=\frac{17}{cos40^o}\approx22,192cm\)
\(\cos C=\frac{AC}{BC}=\frac{14,265}{22,192}\approx0,643\Rightarrow C\approx50^o\)