Cho △ABC nhọn có H là trực tâm. Gọi D và E lần lượt là giao điểm của BH với AC, CH với AB. Chứng minh rằng :
1)△AEC và △ADB là hai tam giác đồng dạng.
2) ∠ACB=∠AED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét 2 tam giác △AEC và △ADB có:
∠A là góc chung
∠ADB=AEC=90 độ
=)△AEC=△ADB(g.g.g)
bạn tham khảo nha
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{BAD}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
Xét \(\Delta AEC\) và \(\Delta ADB\):
\(\widehat{A}:chung\)
\(\widehat{AEC}=\widehat{ADB}(=90^\circ)\)
\(\to\Delta AEC\backsim \Delta ADB(g-g)\)
H là trực tâm
=>BD vuông góc với AC;CE vuông góc với AB
Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=180 độ-góc BED=góc ACB
H là trực tâm
=)BD ⊥ AC;CE ⊥ AB
xét tứ giác BEDC có:
∠BEC=∠BDC=90 độ
=)BEDC là tứ giác nội tiếp
=)∠AED=180 độ
=)∠BED=∠ACB
mik off lâu quá because mik phải ôn thi
xin lôĩ bạn nha
Mink chứng mink từng câu nha nhưng phần dễ sẽ làm hơi tắt nên bn đọc kĩ nha
a, Xét tam giác ADB và tam giác AEC có
Góc ADB = Góc AEC ( = 90 )
Góc BAC chung
Suy ra tam giác ADB đồng dạng với tam giác AEC ( g.g )
b ,
Có tam giác ADB đồng dạng với tam giác AEC ( c.m.t )
AD/AE = AB/AC ( định nghĩa 2 tam giác đồng dạng )
hay AD/AB = AE/AC
Xét tam giác AED và tam giác ACB có
BAC chung
AD/AB = AE/AC ( c.m.t)
Suy ra tam giác AED đồng dạng với tam giác ACB ( g.g )
tự kẻ hình ná
trong tam giác AHC có
AK=KH
HN=CN
=> KN là đtb=> KN//AC và KN=AC/2
tương tự, ta có MK//AB và MK=AB/2
MN//BC và MN=BC/2
Xét tam giác ABC và tam giác KMN có
KN/AC=MN/BC=MK/AB(=1/2) (cũng là tỉ số đồng dạng của 2 tam giác)
=> tam giác ABC đồng dạng với tam giác KMN(ccc)
1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)
nên ΔADE\(\sim\)ΔACB(c-g-c)
1)Xét 2ΔAEC và ΔADB có:
góc A chung
góc ADB=AEC=90
⇒ΔAEC≈ΔADB(g.g)
lm cả phần 2 đi bn