Cho A= 1 + 2 + 2^2 + 2^3 + 2^4 +...+ 2^2016
a) tính tổng A
b) tìm số dư của A khi chia cho 7
c) Tìm chữ số tận cùng của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=1+2+2^2+2^3+...+2^{2005}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)
\(2A=2+2^2+2^3+...+2^{2006}\)
\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2^{2006}-1\)
c, Số số hạng của A là : (2005 - 1) + 1 = 2005 (số hạng)
Nếu nhóm 3 số hạng vào 1 nhóm thì có : 2005 : 3 = 668 nhóm dư 1 số hạng
Ta có :
\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)
\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)
\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)
\(\Rightarrow A\div7\) dư 3
d, Làm tương tự c
a,3A=3+3^2+3^3+...+3^2020
=>3A-A=(3+3^2+3^2+3^3+...+3^2021)-(1+3+3^2+3^3+...+3^2020)
=>2A=3^2021-1=>A=\(\frac{3^{2021}-1}{2}\)
a, \(A=1+2+2^2+...+2^n\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{n+1}\)
\(2A-A=\left(2+2^2+2^3+...+2^{n+1}\right)-\left(1+2+2^2+...+2^n\right)\)
\(\Rightarrow A=2^{n+1}-1\)
Mấy phần kiia cần có thêm dữ kiện
mik tính A trước nhé
\(A=1-2+2^2-...-2^{2007}+2^{2008}\)
\(2.A=2-2^2+2^3-...-2^{2008}+2^{2009}\)
\(2.A-A=\left(2-2^2+2^3-..-2^{2008}+2^{2009}\right)\)\(-\left(1-2+2^2-...-2^{2007}+2^{2008}\right)\)
\(A=1-2^{2009}\)
1.
Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)
Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)
\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)
Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp
\(\Rightarrow S\) chia 6 dư a
Mà \(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)
Vậy S chia 6 dư 3
2.
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)
Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876
Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8
=> Ba CTSC là 376
3.
\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)
\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3
\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3
\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4
4.
\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4
\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)
\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)
CM bằng quy nạp (có trên mạng)
bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ
Cho A= 1944^2005
a) tìm dư khi chia A cho 7
b) tìm chữ số tận cùng của A
c) tìm 2 chữ số tận cùng của A
a/ A = 4 + 42 + 43 + ...... + 445 (1)
nhân 2 vế với 2 ta được
4A = 42 + 43 + 44 + ......... + 455 (2)
lấy (2) - (1) ta được'
4A - A = 455 - 4
3A = 455 - 4
A = ( 455 - 4 ) : 3
a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017
=> 2A-A= 2^2017-1
=> A= 2^2017-1/2