1.Cho hình thang ABCD ( AB//CD ) gọi M,I,N lần lượt là trung điểm AD,AC,BC . chứng minh M,I,N thẳng hàng .
2.Cho tam giác ABC gọi M là trung điểm BC , I là trung điểm AM . Từ BI cắt AC ở D . Qua M kẻ đường thẳng song song BD cắt A ở E :
chứng minh AD=DE=EC
chứng minh ID=1/4
3.cho tam giác ABC có AB>AC , lấy E thuộc AB sao cho BE=AC . Gọi I,D,F thứ tự là trung điểm CE,AE,BC :
Chứng minh : a) tam giác IDF cân
b)Góc BAC = 2 lần góc IDF
Câu 2:
a: Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: Dlà trung điểm của AE
=>AD=DE(1)
Xét ΔBDC có
M làz trung điểm của BC
ME//BD
Do đó: E là trung điểm của CD
=>DE=EC(2)
Từ (1) và (2) suy ra AD=DE=EC
b: Xét ΔAME có ID//ME
nên ID/ME=AD/AE
=>ID/ME=1/2
=>hay ME=2ID
Xét ΔBDC có ME//BD
nên ME/BD=CE/CD
=>ME/BD=1/2
=>ME=1/2BD
=>2ID=1/2BD
hay DI=1/4BD