K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

3 tháng 3 2016

a) 24 và 25

b) 13, 14 và 15

c) 21, 23, và 25

d) 40

3 tháng 2 2023

Ét o é

3 tháng 2 2023

Hai can đựng 13 lít nước. Nếu bớt ở can thứ nhất 2 lít và thêm vào can thứ hai lít, thì can thứ nhất nhiều hơn can thứ hai lít. Hỏi lúc đầu mỗi can đựng được bao nhiêu lít nước?

24 tháng 5 2015

\(A=\frac{4}{n-1}+\frac{6}{n-1}+\frac{3}{n-1}\)

\(=\frac{4+6-3}{n-1}=\frac{7}{n-1}\)

Để A là số tự nhiên 

thì n-1 \(\in\) Ư(7) (ước dương)

=>n-1=1          n-1=7

n=2                 n=8

Vậy số tự nhiên n lớn nhất để A là số tự nhiên là 8

5 tháng 4 2018

sai 1 lỗi ko hề nhẹ đó là:

- 3/n-1 mà viết thành + 3/n-1

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

26 tháng 3 2015

33

26 tháng 3 2015

tra loi ho minh voi cac ban

3 tháng 3 2021

Giả sử tổng \(A=\overline{aaa}\) ta có

\(\overline{aaa}=\frac{n\left(1+n\right)}{2}\Rightarrow2.\overline{aaa}=n\left(n+1\right)\)

\(\Rightarrow2.\overline{aaa}=2.a.111=2.a.3.37=6.a.37=n\left(n+1\right)\) (*)

n và (n+1) là 2 số tự nhiên liên tiếp \(\Rightarrow6.a=\orbr{\begin{cases}36\Rightarrow a=6\\38\Rightarrow a=\frac{38}{6}\left(loai\right)\end{cases}}\)

Thay a=6 vào (*)\(\Rightarrow6.a.37=6.6.37=36.37=n\left(n+1\right)\Rightarrow n=36\)