Với giá trị nào của x thì căn thức sau có nghĩa :
\(\sqrt{x^2+2x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow3x-2\ge0\)
hay \(x\ge\dfrac{2}{3}\)
để căn có nghĩa thì \(2x^2+4x+5\ge0\)
\(\Rightarrow2x^2+4x+2+3\ge0\Rightarrow2\left(x+1\right)^2+3\ge0\) (luôn đúng)
\(\Rightarrow\) căn luôn có nghĩa với mọi \(x\in R\)
a) ĐKXĐ: \(x\in R\)
b) ĐKXĐ: \(-2\sqrt{2}+2\le x\le2\sqrt{2}+2\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(-1\le x\le1\)
c: ĐKXĐ: \(x\le-2\)
Ta có : \(\sqrt{x^2+2x+2}=\sqrt{\left(x^2+2x+1\right)+1}=\sqrt{\left(x+1\right)^2+1}\ge1>0\) với mọi \(x\in R\)
Vậy với mọi \(x\in R\)thì căn thức trên xác định.