K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

a)a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

+ ABAB là tia phân giác của góc HADHAD  

Suy ra: ˆDAB=ˆBAHDAB^=BAH^

+ ACAC là tia phân giác của góc HAEHAE

Suy ra: ˆHAC=ˆCAEHAC^=CAE^

Ta có: ˆHAD+ˆHAE=2(ˆBAH+ˆHAC)HAD^+HAE^=2(BAH^+HAC^)=2.ˆBAC=2.90∘=180∘=2.BAC^=2.90∘=180∘

Vậy ba điểm D,A,ED,A,E thẳng hàng.

b)b) Gọi MM là trung điểm của BCBC

Theo tính chất của tiếp tuyến, ta có: AD⊥BD;AE⊥CEAD⊥BD;AE⊥CE

Suy ra: BD//CEBD//CE

Vậy tứ giác BDECBDEC là hình thang.

Vì MM là trung điểm của BCBC và AA là trung điểm của DEDE (vì DE là đường kính đường tròn (A))

Nên MAMA là đường trung bình của hình thang BDECBDEC

Suy ra: MA//BD⇒MA⊥DEMA//BD⇒MA⊥DE (vì BD⊥DEBD⊥DE)

Trong tam giác vuông ABCABC có AM là đường trung tuyến nên ta có: MA=MB=MC=BC2MA=MB=MC=BC2

Suy ra MM là tâm đường tròn đường kính BCBC với MAMA là bán kính

Vậy DEDE là tiếp tuyến của đường tròn tâm MM đường kính BC.



 

4 tháng 12 2017

O C D M I H B

a) Xét tam giác cân OCD có OH là đường cao nên đồng thời là trung tuyến. Vậy thì HC = HD.

Xét tứ giác ODBC có hai đường chéo cắt nhau tại trung điểm mỗi đường nên nó là hình bình hành.

Lại có hai đường chéo OB và CD vuông góc với nhau nên ODBC là hình thoi.

b) Do ODBC là hình thoi nên OC = CB. 

Xét tam giác OBC có OB = OC = BC ( = R) nên OBC là tam giác đều. Vậy thì \(\widehat{OBC}=60^o\)

c) Xét tam giác OCM có CB là đường trung tuyến ứng với cạnh OM.

Lại có \(CB=\frac{1}{2}OM\) nên tam giác OCM vuông tại C.

Từ đó suy ra MC là tiếp tuyến tại C của đường tròn (O)

d) Xét tam giác vuông OCM có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có:

\(CH^2=OH.HM=HB.HM\)

Tam giác OCI vuông tại C có OH là đường cao nên ta có:

\(OH^2=HI.HC=HI.HD\)

Vậy nên \(HI.HD+HB.HM=OH^2+CH^2=OC^2=R^2\)

Vậy \(HI.HD+HB.HM=R^2\)

8 tháng 12 2017

Dạ em cảm ơn chị đã giải giúp em:)

a: góc AHM+góc AKM=180 độ

=>AHMK là tứ giác nội tiếp

b: góc HBM=180 độ-góc ABM

góc KCM=180 độ-góc ACM

góc ABM=góc ACM

=>góc HBM=góc KCM

mà góc MHB=góc MKC

nên ΔMBH đồng dạng với ΔMCK

=>MB/MC=MH/MK

=>MB*MK=MC*MH

a:góc AHM+góc AKM=180 độ

=>AHMK nội tiếp

b: góc MBH+góc ABM=180 độ

góc MCK+góc ACM=180 độ

góc ABM=góc ACM

=>góc MBH=góc MCK

mà góc MHB=góc MKC

nên ΔMHB đồng dạng vơi ΔMKC

=>MH/MK=MB/MC

=>MH*MC=MK*MB