Xác định điều kiện mà số hữu tỉ x phải thỏa mãn:
(2x-1/2) × ( 1/3-3x) <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)x>0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\2x-1>0\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\2x-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x>\frac{1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow x>\frac{1}{2}\)hoặc \(x< 0\).
Để(x-1/3)/(1,75-x)>0 thì:
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
\(\left(x-\frac{1}{2}\right)\left(x+\frac{3}{4}\right)>0\)
th1 :
\(\hept{\begin{cases}x-\frac{1}{2}>0\\x+\frac{3}{4}>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>-\frac{3}{4}\end{cases}\Rightarrow}x>\frac{1}{2}}\)
th2 :
\(\hept{\begin{cases}x-\frac{1}{2}< 0\\x+\frac{3}{4}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< -\frac{3}{4}\end{cases}\Rightarrow}x< -\frac{3}{4}}\)
ta có
x.y.y.z.x.z =1/3.(-2/5).(-3/10)=1/25
nên (x.y.z)^2 =1/25
+) x.y.z=1/5 nên x= 1/5:1/3=3/5
y=1/5:(-2/5)=-1/2
z=1/5:(-3/10)=-2/3
+)x.y.z = -1/5 nên x=-1/5 :1/3 =-3/5
y= -1/5:(-2/5) =1/2
z=-1/5:(-3/10)=2/3.
sau đó bạn tự kết luận nhé
Từ đề bài ta có: \(\left(x.y.z\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow\orbr{\begin{cases}xyz=\frac{1}{5}\\xyz=-\frac{1}{5}\end{cases}}\)
Với \(xyz=\frac{1}{5}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{2}{3}\\z=\frac{3}{5}\end{cases}}\)
Với \(xyz=\frac{-1}{5}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{3}\\z=\frac{-3}{5}\end{cases}}\)
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
A=\(\frac{x^2y^2+x^2z^2+y^2z^2}{x^2y^2z^2}\)
Ta có:\(x^2y^2+x^2z^2+y^2z^2=\left(xy+yz+zx\right)^2-2\left(xyz\right)\left(x+y+z\right)\)
\(=\left(xy+yz+zx\right)^2\)(do x+y+z=0)
Do đó A=\(\frac{\left(xy+yz+zx\right)^2}{\left(xyz\right)^2}=\left[\frac{\left(xy+yz+zx\right)}{xyz}\right]^2\)
Nên A là số chính phương(ĐCCM)