Cho phân số: A=\(\frac{6n-1}{3n+2}\)
a) Tìm n \(\varepsilon\)Z để A \(\varepsilon\)Z
b) Tìm n \(\varepsilon\)Z để A có GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)
a/ \(\frac{3n}{n-1}=\frac{3n-3+3}{n-1}=3+\frac{3}{n-1}\)
để 3n chia hết cho n-1 thì n-1 phải thuộc ước của 3
suy ra n-1 thuộc -3;-1;1;3
suy ra n thuộc -2;0;2;4
b/\(\frac{n+10}{n-1}=\frac{n-1+11}{n-1}=1+\frac{11}{n-1}\)
để n+10 là bội của n-1 thì 11 phải là bội của n-1
suy ra n-1 thuộc -11;-1;1;11
suy ra n thuộc -10;0;2;12
gặp dạng toán như vậy thì bạn cứ áp dụng cách này để làm nhé
c/ gọi ba số đó là n-1;n;n+1
ta thấy \(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3 với mọi n thuộc Z
vậy tổng 3 số liên tiếp luôn chia hết cho 3
nhớ k cho mình nhé ^.^
Ta có : 3n chia hết cho n - 1
<=> 3n - 3 + 3 chia hết cho n - 1
<=> 3(n - 1) + 3 chia hết cho n - 1
<=> 3 chia hết cho n - 1
<=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng:
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
a) Để A có giá trị nguyên
suy ra (6n - 1) chia hết cho (3n + 2)
Vì (3n + 2) chia hết cho (3n + 2) suy ra 2(3n + 2) chia hết cho (3n + 2) hay (6n + 4) chia hết cho (3n + 2)
suy ra [(6n - 1) - (6n + 4)] chia hết cho (3n + 2)
(6n - 1 - 6n - 4) chia hết cho (3n + 2)
5 chia hết cho (3n + 2)
hay 3n + 2 thuộc Ư(5). Mà Ư(5) thuộc {1; -1; 5; -5}
Ta có bảng sau:
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 ko thuộc Z (loại) | -1 | 1 | -7/3 ko thuộc Z (loại) |
Vậy n = 1 hoặc n = -1
b) Ta có: A=6n - 1/3n + 2 = 6n + 4 - 5/3n + 2 = 2(3n + 2) - 5/3n + 2 = 2 - 5/3n + 2
Để A min suy ra 5/3n + 2 max
Vì 5 ko thay đổi suy ra 3n + 2 min và 5/3n + 2 là số âm nhỏ nhất
Suy ra 3n + 2 là số âm lớn nhất nên 3n + 2 = -1
3n = -1 - 2 = -3
n = -3 : 3 = -1
Vậy min A = -7 tại n = -1
Nhớ k mình đúng nhé!!!Thanks các bạn nhiều
Phân tích \(\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}\)
Để \(\frac{6n+99}{3n+4}\) là phân số tối giản thì 91 phải chia hết cho 3n+4
Vì 91=7.13 nên 3n+4\(\in\){1;7;13;91} nên
trường hợp 1:3n+4=1=>n=-1(loại)
trường hợp 2:3n+4=7=>n=1
trường hợp 3:3n+4=13=>n=3
trường hợp 4:3n+4=91=>n=29
Vậy n\(\in\) {1;3;29}
Phần a dễ , tớ làm sau.Để tớ chơi phần b {}
Phàn a) dễ oy , tự lm nhé !
b) Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A_{min}\Leftrightarrow\frac{5}{3n+2}max\)
Xét 3n+2>0 =>3n>-2=>n>\(\frac{-2}{3}\)=> n >hoặc = 0(vì n \(\in\)Z )=>\(\frac{5}{3n+2}\)>0 (1)
Xét 3n+2<0 => 3n<-2 =>n<\(\frac{-2}{3}\)=>\(\frac{5}{3n+2}\)<0 (2)
từ (1) và (2) và do \(\frac{5}{3n+2}\)max => ta chọn trường hợp (1)
p/s \(\frac{5}{3n+2}\)dương có tử số dương ko đổi nên A bé nhất khi mẫu số bé nhất \(\Leftrightarrow\)n nhỏ nhất \(\Leftrightarrow\)n=0
Vậy \(A_{min}=\frac{-1}{2}\Leftrightarrow n=0\)