tìm x,y biết x^2015 +x^2016+2015^2016=y^2016+y^2017+2016^2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x biết: 2016 x 2016 - 2015 x 2017 + x = 2016
x = 2015 x 2017 + 2016 - 2016 x 2016
x = 2015 x 2017 + 2016 x (1 - 2016)
x = 2015 x 2017 - 2015 x 2016
x = 2015 x (2017 - 2016)
x = 2015 x 1
x = 2015
Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)
Khi đó phương trình trở thành:
\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)
Tick plz
ta có
\(\left|x-2015\right|+\left|2018-x\right|+\left|x-2016\right|+\left|y-2017\right|=3\)
Áp dụng tính chất dấu giá trị tuyệt đối, t acó
\(\left|x-2015\right|+\left|2018-x\right|\ge\left|2018-x+x-2015\right|=3\)
mà \(\left|y-2017\right|\ge0;\left|x-2016\right|\ge0\)
=>VT>=3
dấu = xảy ra <=>y=2017 và x=2016
Vì \(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)
\(\Rightarrow x=y=1\) hoặc \(x=y=0\)
Với \(x=y=1\)
\(S=2018\left(1^{2018}+1^{2018}\right)\)
\(S=2018.2\)
\(S=4036\)
Với \(x=y=0\)
\(S=2018\left(0^{2018}+0^{2018}\right)\)
\(S=0\)
Ta có :
\(x=\frac{2016^{2017}+1}{2016^{2016}+1}\)
\(\frac{1}{2016}x=\frac{2016^{2017}+1}{2016^{2017}+2016}=\frac{2016^{2017}+2016-2015}{2016^{2017}+2016}\)
\(\Rightarrow\frac{1}{2006}x=1-\frac{2015}{2016^{2017}+2016}\)
Ta lại có :
\(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)
\(\Rightarrow\frac{1}{2016}y=\frac{2016^{2016}+1}{2016^{2016}+2016}=\frac{2016^{2016}+2016-2015}{2016^{2016}+2016}\)
\(\Rightarrow\frac{1}{2016}y=1-\frac{2015}{2016^{2016}+2016}\)
Mà \(\frac{2015}{2016^{2017}+2016}< \frac{2015}{2016^{2016}+2016}\)(so sánh mẫu)
\(\Rightarrow1-\frac{2015}{2016^{2017}+2016}>1-\frac{2015}{2016^{2016}+2016}\)
\(\Rightarrow\frac{1}{2016}x>\frac{1}{2016}y\)
\(\Rightarrow x>y\)
DÀI QUÁ KHÔNG TÍNH ĐƯỢC. CÁI NÀY CÓ MÀ ĐI HỎI THẦN ĐỒNG VỀ MÔN TOÁN ĐI
A = 2016 x 2016 x ... x 2016
= 20162015
= \(\overline{...6}\)
B = 2017 x 2017 x ... x 2017
= 20172016
= 2017504.4
= (20174)504
= (\(\overline{...1}\))504
= \(\overline{...1}\)
=> A + B = \(\overline{...6}+\overline{...1}=\overline{...7}\) không chia hết cho 5
@Cỏ Ba Lá