ai giải giùm mình bài này mình hậu tạ
cho hbh ABCD, I thuộc AC, DI cắt AB tại M , BC tại N . CMR:
1)AM/AB=DM/DN=CB/CN
2)ID2=IM . IN
ai giải đc mình tick đúng cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình mik ko vẽ đc xl!!!(GT+KL cx vậy)
a)Ta có AD//BN(NϵBC) => \(\frac{AM}{AB}=\frac{DM}{DN}\)(dl ta-lét) \(_1\)
Lại có BM//DC(MϵAB) => \(\frac{CB}{CN}=\frac{DM}{DN}\)(dl ta-lét) \(_2\)
từ 1 và 2 => \(\frac{AM}{AB}=\frac{DM}{DN}=\frac{CB}{CN}\left(đpcm\right)\)
b) ta có: AM//DC(MϵAB) => \(\frac{DI}{IM}=\frac{BC}{AM}=\frac{AB}{AM}\)(hệ quả ; BC=AB)
CMTT => \(\frac{IN}{DI}=\frac{NC}{DA}=\frac{NC}{CB}\)
VÌ \(\frac{NC}{CB}=\frac{AB}{AM}\left(cmt\right)\)
\(\Rightarrow\frac{IN}{ID}=\frac{ID}{IM}\Leftrightarrow ID^2=IN\cdot IM\left(đpcm\right)\)
câu b sai rồi nhé, DC/AM chứ không phải là BC/AM và DC=AB( 2 cạnh đối của HBH)
a)
Áp dụng Ta-lét vào tam giác ADM và MNB,vì AD//BN,ta có: \(\frac{AM}{MB}=\frac{DM}{DN}\)(1)
Áp dụng Ta-lét vào tam giác DNC ,vì MB//DC, ta có : \(\frac{DM}{DN}=\frac{CB}{CN}\)(2)
Từ (1),(2), ta có: \(\frac{AM}{MB}=\frac{DM}{DN}=\frac{CB}{CN}\)(đpcm)
b)
Áp dụng Ta-lét vào tam giác AMI và IDC,vì AM//DC ,ta có: \(\frac{DI}{IM}=\frac{IC}{AI}\)(1)
Áp dụng Ta-lét vào tam giác IAD và INC , vì AD//NC , ta có :\(\frac{IN}{ID}=\frac{IC}{AI}\)(2)
Từ (1),(2); ta có : \(\frac{ID}{IM}=\frac{IN}{ID}\)\(\Rightarrow\)IM.IN=ID2.
a) Xét \(\Delta AED\) và \(\Delta BEN\)
Ta có : \(\widehat{AED}=\widehat{BEN}\) ( đối đỉnh )
\(\widehat{ADE}=\widehat{BNE}\) ( Do \(\text{AD//BC}\) )
\(\Rightarrow\Delta AED\sim\Delta BEN\)
b) Ta có : \(\text{AE//DC}\) ( Do \(ABCD\) là hình bình hành )
\(\Rightarrow\dfrac{AM}{MC}=\dfrac{EM}{MD}\) ( theo định lí Ta-lét )
\(\Rightarrow MA.DM=MC.ME\)
c) Ta có :
\(\text{AE//DC}\)\(\Rightarrow\dfrac{DM}{DC}=\dfrac{CM}{AC}\)( theo định lí Ta-lét )
\(\text{AD//BC}\) \(\Rightarrow\dfrac{AM}{AC}=\dfrac{DM}{DN}\)( theo định lí Ta-lét )
\(\Rightarrow\dfrac{DM}{DE}+\dfrac{DM}{DN}=\dfrac{CM}{AC}+\dfrac{AM}{AC}=1\)
\(\Rightarrow\dfrac{1}{DE}+\dfrac{1}{DN}=\dfrac{1}{DM}\)
ai giải giùm đi