K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

\(A=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=9\left(1-\dfrac{1}{100}\right)=\dfrac{891}{100}\)

27 tháng 4 2016

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=9\left(1-\frac{1}{100}\right)\)

\(A=9\times\frac{99}{100}\)

\(A=\frac{891}{100}\) hoặc =8,91

27 tháng 4 2016

A=9/1.2+9/2.3+9/3.4+...+9/98.99+9/99.100

A=9.(1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100)

A=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)

A=9.(1/1-1/100)

A=9.99/100

A=891/100

A=8+91/100 ( viết dưới dạng hỗn số )

Vậy A=8+91/100

Nkớ k cho mink đó nha !!!

16 tháng 4 2018

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)

\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(A=9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=9.\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(A=9.\frac{99}{100}\)

\(A=\frac{891}{100}\)

8 tháng 4 2018

kết quả là 891/100 nha

23 tháng 4 2016

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=9\left(1-\frac{1}{100}\right)\)

\(=9\times\frac{99}{100}\)

\(=\frac{891}{100}\)
 

23 tháng 4 2016

A=9.(1/1.2 +1/2.3 +1/3.4+...+1/98.99 +1/99.100

A=9.(1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)

A=9.(1-1/100)

A=9.99/100

A=891/100

25 tháng 3 2015

Ta có:

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...\frac{9}{98.99}+\frac{9}{99.100}\)

     \(=9.\frac{1}{1.2}+9.\frac{1}{2.3}+9.\frac{1}{3.4}+...+9.\frac{1}{98.99}+9.\frac{1}{99.100}\)

     \(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

     \(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

     \(=9.\left(1-\frac{1}{100}\right)\)

     \(=9.\frac{99}{100}\)

     \(=\frac{9.99}{100}\)

      \(=\frac{891}{100}\)

20 tháng 3 2023

A=91.2+92.3+93.4+...+998.99+999.100

8 tháng 8 2016

A=9.(1/1.2+1/2.3+1/3.4+....+1/98.99+1/99.100)

A=9.(1/1-1/2+1/2-1/3+...+1/98-1/99+1/99-1/100)

A=9.(1-1/100)

A=9.99/100

A=901/100

19 tháng 3 2017

901/100

A=9/1.2+ 9/2.3+ 9/3.4+ .... +9/98.99 + 9/99/100

  =9(1- 1/2 + 1/2 -1/3+...+1/99 -1/100)

  =9.(1- 1/100)

  =9.99/100

  =891/100

2 tháng 5 2019

A=9/1.2+9/2.3+...+9/99.100

A/9=1/1.2+1/2.3+....+1/99.100

A/9=1-1/2+1/2-1/3+....+1/99-1/100

A/9=1+(-1/2+1/2)+(-1/3+1/3)+....+(-1/99+1/99)-1/100

A/9=1-1/100

A/9=99/100

A=99/100.9=891/100

     Vậy A=891/100

 mik ko biết đúng hay sai mn góp ý giúp mik nha

5 tháng 5 2022

bài 2:

\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=9.\left(1-\dfrac{1}{100}\right)=9.\left(\dfrac{100}{100}-\dfrac{1}{100}\right)=\dfrac{891}{100}\)

bài 3:

\(=>\dfrac{x}{3}=\dfrac{5}{8}+\dfrac{1}{8}=\dfrac{8}{8}=1=\dfrac{3}{3}\)

\(=>x=3\)