K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

        4x2+4x=8y3-2z+4

<=> 2x2+2x=4y3-z+2

<=>2x(x+1)=4y3-2z+2

Ta có : VT chia hết cho 4 =>VP chia hết cho 4 , 4y3 chia hết cho 4 

                                                                      2z chia hết cho 4 => z chia hết cho 2 , mà 2 ko chia hết cho 2 => pt trên không có No nguyên

21 tháng 10 2021

272hay 27y2

21 tháng 10 2021

272

21 tháng 1 2023

Đáp án A.

3 tháng 7 2021

Bạn tham khảo trường hợp \(n=4\) của định lí Fermat cuối cùng. 

3 tháng 1 2018

Xét x là số chẵn thì \(x^4⋮16\)

Xét x là số lẻ thì: 

        \(x^2:8\)dư 1

\(\Rightarrow x^4=\left(8k+1\right)^2:16\)dư 1

Như vậy mỗi số \(x^4;y^4;z^4;t^4\)chia cho 16 dư 1 hoặc 0

Nên \(x^4+y^4+z^4+t^4\)chia cho 16 có số dư không lớn hơn 5

Mà 2015 chia cho 16 dư 15

Dẫn đến mâu thuẫn

Hay x;y;z;t không tồn tại

Vậy phương trình không có nghiệm nguyên

16 tháng 4 2019

Chọn D.

Đặt   khi đó phương trình tương đương với: t2 - 6t + m 3 = 0 (*)

Để phương trình đã cho có 4 nghiệm phân biệt khi (*) có 2 nghiệm dương phân biệt lớn hơn 1.

31 tháng 8 2018

11 tháng 10 2017

Điều kiện xác định  x ∈ R

Đặt  t = x 2 + 1 , t ≥ 1

Phương trình trở thành  t 2 - 1 - 4 t - m + 1 = 0 ⇔ t 2 - 4 t = m 2

Để phương trình có 4 nghiệm phân biệt thì phương trình (2) có hai nghiệm phân biệt lớn hơn 1.

Xét hàm số  f t = t 2 - 4 t  có đồ thị là parabol có hoành độ đỉnh  x = 2 ∈ 1 ; + ∞  nên ta có bảng biến thiên:

Dựa BBT ta thấy để (2) có hai nghiệm phân biệt lớn hơn 1 thì  - 4 < m < - 3

Vậy không có giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: B

13 tháng 1 2017

Đáp án đúng : C