phương trình x^2 + (2m+1)x +m^2 -1. tìm m để phương trình có hai nghiệm phân biệt thõa mãn(x1-x2)^2=x1-5x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)
\(=4m^2+16m+16+8m+20=4m^2+24m+36\)
\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m+3<>0
hay m<>-3
Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)
\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)
\(\Leftrightarrow4m^2+24m+36=4\)
\(\Leftrightarrow m^2+6m+9=1\)
=>m+3=1 hoặc m+3=-1
=>m=-2 hoặc m=-4
1) Thay m=2 vào (1), ta được:
\(x^2-2\cdot3x+16-8=0\)
\(\Leftrightarrow x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy: Khi m=2 thì (1) có hai nghiệm phân biệt là: \(x_1=2\); \(x_2=4\)
b) Ta có: \(\Delta=4\cdot\left(2m-1\right)^2-4\cdot1\cdot\left(8m-8\right)\)
\(\Leftrightarrow\Delta=4\cdot\left(4m^2-4m+1\right)-4\left(8m-8\right)\)
\(\Leftrightarrow\Delta=16m^2-16m+4-32m+32\)
\(\Leftrightarrow\Delta=16m^2-48m+36\)
\(\Leftrightarrow\Delta=\left(4m\right)^2-2\cdot4m\cdot6+6^2\)
\(\Leftrightarrow\Delta=\left(4m-6\right)^2\)
Để phương trình có hai nghiệm phân biệt thì \(\left(4m-6\right)^2>0\)
mà \(\left(4m-6\right)^2\ge0\forall m\)
nên \(4m-6\ne0\)
\(\Leftrightarrow4m\ne6\)
hay \(m\ne\dfrac{3}{2}\)
Vậy: Để phương trình có hai nghiệm phân biệt thì \(m\ne\dfrac{3}{2}\)
\(\Delta=\left(2m-1\right)^2-4\left(m^2-m\right)=1>0\) ;\(\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-m\end{matrix}\right.\)
\(\left|x_1-x_2\right|\le5\)
\(\Leftrightarrow\left(x_1-x_2\right)^2\le25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le25\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-m\right)\le25\)
\(\Leftrightarrow1\le25\) (luôn đúng)
Vậy bài toán thỏa mãn với mọi m
\(\Delta=\left(2m+1\right)^2-4\left(m^2-1\right)=4m+1+4=4m+5\)
Để pt có 2 nghiệm pb m > -5/4
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2m-1\left(1\right)\\x_1x_2=m^2-1\left(2\right)\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-4x_1x_2=x_1-5x_2\)
\(\Leftrightarrow4m^2+4m+1-4m^2+4=x_1-5x_2\)
\(\Leftrightarrow x_1-5x_2=4m+5\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2m-1\\x_1-5x_2=4m+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x_2=-6m-6\\x_1=-2m-1-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-m-1\\x_1=-2m-1+m+1=-m\end{matrix}\right.\)
Thay vào (2) ta được \(-m\left(-m-1\right)=m^2-1\)
\(\Leftrightarrow m^2+m=m^2-1\Leftrightarrow m=-1\)(tmđk)