K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

minh cung ko biet

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

17 tháng 9 2017

hình ra số ngu như chó

3 tháng 3 2019

Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔAOB đều ⇒ BE là đường trung tuyến đồng thời là đường cao

                   ⇒ BE ⊥ AO

                   ⇒ ΔBEC vuông tại E

                   Mà EG là đường trung tuyến

                   ⇒ Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8 (1)

ΔCOD đều ⇒ CF là đường trung tuyến đồng thời là đường cao

                   ⇒ CF ⊥ OD

                   ⇒ ΔBFC vuông tại F

                   Mà FG là đường trung tuyến

                   ⇒ Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8 (2)

Hình thang ABCD (AB// CD) có: AC = AO + OC = OB + OD = BD

                   ⇒ ABCD là hình thang cân

                   ⇒ AD = BC.

ΔAOD có: AE = EO, FO = FD

                   ⇒ EF là đường trung bình của ΔAOD

                   ⇒ Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

                   Mà AD = BC (cmt)

                   ⇒ Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8 (3)

Từ (1); (2); (3) suy ra EF = FG = GE ⇒ ΔEFG đều (đpcm).

24 tháng 4 2017

Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 9 2017

A B C D O H I K

2 đường chéo AC; BD cắt nhau tại O. Do hình thang ABCD cân (AB//CD)

=> OA=OB; OC=OD (Tự chứng minh)

Mà ^AOB=600 => ^COD=600 (Đối đỉnh) => Tam giác AOB và tam giác COD đều.

Xét tam giác AOB đều: H là trung điểm OA => BH vuông góc OA 

=> Tam giác BHC vuông tại H; K là trung điểm của BC => HK=BK=CK=BC/2 (1)

Tương tự: Tam giác CIB vuông tại I, K là trung điểm BC => IK=CK=BK=BC/2 (2)

Xét tam giác AOD: H là trung điểm OA; I là trung điểm OD => IH là đường trung bình tam giác AOD.

=> IH=AD/2. Mà hình thang ABCD cân (AB//CD) => AD=BC => IH=BC/2 (3)

Từ (1); (2) và (3) => HK=IK=IH => Tam giác HIK là tam giác đều (đpcm).

30 tháng 6 2015

ngồi suy nghj lát ra thuj bạn ạ

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)