K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

\(x^4+2x^2-3=0\)\(\Leftrightarrow\left(x^4+2x^2+1\right)-4=0\Leftrightarrow\left(x^2+1\right)^2-2^2=0\Leftrightarrow\left(x^2-1\right)\left(x^2+3\right)=0\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)

10 tháng 4 2021

Đặt t = x2 ( t ≥ 0 )

pt đã cho trở thành t2 + 2t - 3 = 0

Xét pt bậc 2 ẩn t có a + b + c = 0 nên pt có hai nghiệm t1 = 1(tm) ; t2 = c/a = -3 (ktm)

=> x2 = 1 <=> x = ±1

Vậy ...

3 tháng 5 2023

Đặt \(x^2=t\) \(\left(t\ge0\right)\)

\(\Rightarrow t^2-2t-3=0\\ \Leftrightarrow\Delta=\left(-2\right)^2-4.1.\left(-3\right)=16\\ \Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{2+\sqrt{16}}{2.1}=3\\t_2=\dfrac{2-\sqrt{16}}{2}=-1\end{matrix}\right.\)

\(\Rightarrow t=3\) vì \(t\ge0\)

\(\Rightarrow x^2=3\\ \Rightarrow\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\)

3 tháng 5 2023

Đặt t = x² (t ≥ 0)

Phương trình tương đương:

t² - 2t - 3 = 0

Ta có: a - b + c = 1 - (-2) - 3 = 0

Phương trình có hai nghiệm:

t₁ = -1 (loại)

t₂ = 3 (nhận)

Với t₂ = 3

⇔ x² = 3

⇔ x = √3; x = -√3

Vậy S = {-√3; √3}

5 tháng 5 2019

Cách 1:

x 4 − 2 x 2 − 3 = 0 ⇔ x 4 − 3 x 2 + x 2 − 3 = 0 ⇔ ( x 2 − 3 ) ( x 2 + 1 ) = 0 ⇔ x 2 − 3 = 0 x 2 + 1 = 0 ⇔ x = ± 3 V n ( x 2 ≥ 0 ⇒ x 2 + 1 > 0 )

Vây phương trình có tập nghiệm  S = − 3 ; 3

Cách 2: Đặt t=x2 ( t ≥ 0 )  ta có phương trình t2-2t-3=0 (2)

Ta có a-b+c=1+2-3=0 nên phương trình (2) có 2 nghiệm t1=-1(loại);t2=3(nhận)

Với t2=3 ⇔ x 2 = 3 ⇔ x = ± 3

Vậy phương trình có tập nghiệm S = − 3 ; 3

28 tháng 11 2017
29 tháng 8 2019

Ta có: 3 x 4  – 6 x 2 = 0  ⇔ 3 x 2 ( x 2  – 2) = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy phương trình đã cho có 3 nghiệm:  x 1  = 0;  x 2  = -√2 ;  x 3  = √2

30 tháng 9 2017

x4 – 5x2 + 4 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

9 tháng 7 2017

Đặt m =  x 2  .Điều kiện m ≥ 0

Ta có:  x 4  -8 x 2 – 9 =0 ⇔  m 2  -8m -9 =0

Phương trình m 2  - 8m - 9 = 0 có hệ số a = 1,b = -8,c = -9 nên có dạng a – b + c = 0

suy ra:  m 1  = -1 (loại) ,  m 2  = -(-9)/1 =9

Ta có:  x 2  =9 ⇒ x= ± 3

Vậy phương trình đã cho có 2 nghiệm :  x 1  =3 ; x 2  =-3

23 tháng 7 2019

a)  x 4   –   5 x 2   +   4   =   0   ( 1 )

Đặt x 2   =   t, điều kiện t ≥ 0.

Khi đó (1) trở thành :  t 2   –   5 t   +   4   =   0   ( 2 )

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2   =   1  ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x 2   =   4  ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b)  2 x 4   –   3 x 2   –   2   =   0 ;   ( 1 )

Đặt   x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  2 t 2   –   3 t   –   2   =   0   ( 2 )

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒   Δ   =   ( - 3 ) 2   -   4 . 2 . ( - 2 )   =   25   >   0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t 1   =   2  thỏa mãn điều kiện.

+ Với t = 2 ⇒ x 2   =   2  ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c)  3 x 4   +   10 x 2   +   3   =   0   ( 1 )

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  3 t 2   +   10 t   +   3   =   0   ( 2 )

Giải (2) : Có a = 3; b' = 5; c = 3

⇒  Δ ’   =   5 2   –   3 . 3   =   16   >   0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

17 tháng 10 2019

Ta có: 2 x 4  +  x 2  – 3 =  x 4  + 6 x 2 + 3

⇔ 2 x 4  +  x 2  – 3 –  x 4  – 6 x 2  – 3 = 0

⇔  x 4  – 5 x 2  – 6 = 0

Đặt m =  x 2 . Điều kiện m  ≥  0

Ta có:  x 4  – 5 x 2 – 6 = 0 ⇔  m 2  – 5m – 6 = 0

 =  - 5 2  4.1.(-6) = 25 + 24 = 49 > 0

 

∆ = 49  = 7

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:  x 2 = 6 ⇒ x = ± 6

Vậy phương trình đã cho có 2 nghiệm:  x 1  =  6  ,  x 2  = - 6

7 tháng 1 2019

Ta có:

− x 4 + 3 − 2 x 2 = 0 ⇔ x 2 − x 2 + 3 − 2 = 0

⇔ x 2 = 0 x 2 = 3 − 2     ( V N ) ⇔ x 2 = 0 ⇔ x = 0

Đáp án cần chọn là: A