Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 2 và b chia cho 5 du 3 . Chứng minh rằng ab chia cho 5 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
a chia 5 dư 3 =>a=5k+3
a chia 5 dư 4 =>a=5c+4
=>ab=(5k+3)(5c+4)=(5k+3)5c+(5k+3)4=(5k+3)5c+5.4k+12
=5[(5k+3)c+4k]+5.2+2=5[(5k+3)c+4k+1]+2 chia 5 dư 2
=>đpcm
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
Đặt \(a=5k+2\)
\(b=5h+3\)
\(\Rightarrow ab=\left(5k+2\right)\left(5h+3\right)\)
\(=25kh+15k+10h+6\)
\(=25kh+15k+10h+5+1\)
\(=5\left(5kh+3k+2h+1\right)+1\) chia 5 dư 1.
Vậy ab chai 5 dư 1.