K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

a) Không đúng trong một số trường hợp, ví dụ : x = 5 , y = -15

=> \(x^2+xy+1=5^2-15.5+1=-49< 0\)

8 tháng 10 2017

a, x2 - 2x + 3 = x2 - 2x + 1 + 2 = (x - 1)2 + 2

Mà (x - 1)2 > hoặc = 0 => (x - 2)2 + 2 > 0 với mọi x

18 tháng 6 2017

Ta có:

\(A+B+C=x^2y+xy^2+xy\)

\(=xy.\left(x+y+1\right)\)

mà theo bài ra \(x+y=-1\) nên

\(A+B+C=xy.\left(-1+1\right)=xy.0=0\)

Vậy \(A+B+C=0\) (đpcm)

Chúc bạn học tốt!!!

18 tháng 6 2017

Ta có: \(A+B+C=x^2y+xy^2+xy\)

\(=xy\left(x+y+1\right)=xy\left(-1+1\right)=0\)

\(\Rightarrowđpcm\)

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

26 tháng 7 2016

\(x^2+x+1\)

\(=x^2+2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\)

\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Vậy \(x^2+x+1>0\) với mọi x (đpcm)

Chúc bạn học tốt ^^

26 tháng 7 2016

bien doi ve trai;

= (x + 1/2)2 +1- 1/4 

= (x+1/2)2 +3/4 luon lon hon 0 voi moi x(dpcm)

nêu IQ>100 rat de hiu,