giúp tôi với : phần a (a-b)^3/(c-d)^3=3a^3+2b^3/3c^3+2d^3
phần b x/4=y/5 và x^2*y=640
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng tc dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)
b, Áp dụng tc dstbn:
\(\dfrac{a}{7}=\dfrac{b}{9}=\dfrac{3a-2b}{7\cdot3-2\cdot9}=\dfrac{30}{3}=10\\ \Rightarrow\left\{{}\begin{matrix}a=70\\b=90\end{matrix}\right.\)
c, Gọi 3 phần cần tìm là a,b,c
Áp dụng tc dstbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{99}{9}=11\\ \Rightarrow\left\{{}\begin{matrix}a=22\\b=33\\c=44\end{matrix}\right.\)
Ta có:
3a+2b-c-d=1 (1)
2a+2b-c+2d=2 (2)
4a-2b-2c+d=3 (3)
8a+b-6c+d=4 (4)
(1)+(2)+(3)-(4) vế theo vế ta được:
a+b+c+d=1+2+3-4=2
Vâp a+b+c+d=2
4)
a) x/5 = y/3
=> 3x = 5y
=> x/y = 5/3
=> x= 16 :(5+3) . 5 = 10 ; y = 16 - 10 =6
=> (x;y) thuộc {(10;6)}
Bài 1:
\(\frac{15ab+5b^2}{9a^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a\right)^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{5b}{3a-b}\)
\(\frac{3x^2-3y^2}{9x+9y}=\frac{3\left(x^2-y^2\right)}{9\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{3\left(x+y\right)}=\frac{x-y}{3}\)
\(\frac{m^2-4m+4}{2x-4}=\frac{\left(x-2\right)^2}{2\left(x-2\right)}=\frac{x-2}{2}\)