Tìm các số xy biết 2xy+10x+y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(A=x^2+10x+25=\left(x+5\right)^2\) => A là số chình phương
b) \(B=x^2-2x+1=\left(x-1\right)^2\) => B là số chính phương
Bài 2:
a) \(xy-x+y=4\)
\(\Leftrightarrow\)\(x\left(y-1\right)+\left(y-1\right)=3\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y-1\right)=3\)
=> \(x+1\)và \(y-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
đến đây bạn làm nốt nha
các câu còn lại tương tự, đưa về pt tích
1)
A= x2+10x+25= x2+5x+5x+25=x(x+5)+5(x+5)=(x+5)(x+5)=(x+5)2
=> A là số chính phương
B=x2-2x+1=x2-x-x+1=x(x-1)-(x-1)=(x-1)(x-1)=(x-1)2
=> B là số chính phương
2)
a) \(xy-x+y=4\)
\(\Leftrightarrow x\left(y-1\right)=4-y\)
\(\Leftrightarrow x=\frac{4-y}{y-1}\)
\(\Leftrightarrow x=-1+\frac{3}{y-1}\)
Do x,y nguyên nên \(y-1\inƯ\left(3\right)\)
<=> y-1={-3;-1;1;3}
<=> y={-2;0;2;4}
Vậy (x;y)=(-2;-2);(-4;0);(2;2);(0;4)
b,c,d tương tự
3) 32018=91009<101009 (101009 là số nhỏ nhất có 1010 chữ số)
=>32018 có ít hơn 1010 chữ số
Có face xin link nha :)
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)
Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)
\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)
ta có : a) xy- 5x + y = 17
=) x . ( y - 5 ) . ( y - 5 ) = 17 - 5
=) (x+1) . ( y - 5 ) = 12
=) x + 1 \(\in\) { 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) x \(\in\){ 11 ; 5 ; 2 ;1 ; 0 ; 3 }
=) y - 5 \(\in\){ 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) y \(\in\){ 17 ; 11 ; 8 ; 7 ; 6 ; 9 }
vậy ta có 6 TH x,y là : ( 0 ; 17 ) , ( 1 ; 11 ) , ( 2 ; 9 ) , ( 11 ; 6 ) , ( 5 ; 7 ) , ( 3 ; 8 )
Bài giải
a) xy - 5x + y = 17
x(y - 5) + y = 17
x(y - 5) + y - 5 = 17 - 5 = 12
x(y - 5) + (y - 5) = 12
x(y - 5) + 1(y - 5) = 12
(x + 1)(y - 5) = 12
Bạn tự làm tiếp nha, xem số nào nhân với số nào bằng 12 rồi làm tiếp.
b) 3x + 4y - xy = 15
3x + (4y - xy) = 15
3x + y(4 - x) = 15
12 - [3x + y(4 - x)] = 12 - 15 = -3
12 - 3x - y(4 - x) = -3 (12 - 3x = 3.4 - 3x = 3(4 - x))
3(4 - x) - y(4 - x) = -3
(3 - y)
a, xy-x-2x-1=0
x(y-1-2)-1=0
x(y-3)-1=0
+x=0
+(y-3)-1=0
y-3=1
y=4
Vậy : x=0 và y=4
b, x^2-2xy+x-2y+2=0