giải hộ mink nhé cảm ơn các pạn nhìu mink cần lời giải chi tiết : cho tam giác ABC , M là trung điểm của AC . trên tia đối của tia MB lấy D sao cho MD=MC trên tia đối của tia BC lấy E sao choBE=BC gọi I là giao điểm củaAB và DE cmr; IA = IB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra:AD//BC và AD=BC
hay AD//BE và AD=BE
Xét tứ giác AEBD có
AD//BE
AD=BE
Do đó: AEBD là hình bình hành
Suy ra: AB và ED cắt nhau tại trung điểm của mỗi đường
=>I là trung điểm của AB
hay IA=IB
\(Xét\)\(\Delta AMB\)và \(\Delta DMC\)có:
\(AM=MC\)(M là trung điểm của AC)
\(\widehat{M}_1=\widehat{M}_2\)(2 góc đối đỉnh)
\(BM=MC\)(gt)
=>\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
=>\(AB=DC;\widehat{A}_1=\widehat{C}_1\)
Mà 2 góc này ở vị trí so le trong
=>AB//DC
=>\(\widehat{ABE}=\widehat{DCB}\)(2 góc đồng vị)
Xét \(\Delta ABE\)và \(\Delta DCB\)có:
\(AB=DC\)
\(\widehat{ABE}=\widehat{DCB}\)
\(EB=BC\)
=>\(\Delta ABE=\Delta DCB\left(c-g-c\right)\)
=>\(AE=BD;\widehat{AEB}=\widehat{DBC}\)
Mà 2 góc này ở vị trí đồng vị
=>AE//BD
Xét \(\Delta AIE\)và \(\Delta BID\)có:
\(\widehat{A}_2=\widehat{B}_2\)(AE//BD)
\(AE=DC\)
\(\widehat{AEI}=\widehat{BDI}\)(AE//BD)
=>\(\Delta AIE=\Delta BID\left(g-c-g\right)\)
=>\(AI=BI\)
Vậy AI=IB
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AD//BC và AD=BC
Xét tứ giác AEBD có
AD//BE
AD=BE
Do đó: AEBD là hình bình hành
Suy ra: Hai đường chéo AB và ED cắt nhau tại trung điểm của mỗi đường
hay Y là trung điểm của ED
a/ Xét t/g AMD và t/g BMC có
AM = BM (M là TĐ AB)
\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)
=> t/g AMD = t/g BMC (c.g.c)
b/ Xets t/g BMD và t/g AMC có
BM = AM
\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)
=> t/g BMD = t/g AMC (c.g.c)
=> \(\widehat{ABD}=\widehat{BAC}=90^o\)
=> BD ⊥ AB (1)
c/ Xét t/g BNE và t/g CNA có
BN = CN (N là TĐ BC)
\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)
=> T/g BNE = t/g CNA (c.g.c)
=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)
=> BE ⊥ AB (2) Từ (1) và (2)
=> D , B , E thẳng hàng