Tìm các số nguyên x,y thỏa mãn: \(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)
\(\Leftrightarrow\sqrt{4y-1}-\sqrt{2x+1}=3y+2-\frac{11x}{5}\)
Vì 4y - 1 chia cho 4 có số dư là 2 nên \(\sqrt{4y-1}\)là số vô tỷ .
Ta có VP là số hữu tỉ. VT là số vô tỷ và \(\hept{\begin{cases}4y-1\\2x+1\end{cases}}\)là 2 số hữu tỷ nên.
\(\Rightarrow\sqrt{4y-1}-\sqrt{2x+1}=0\)
\(\Leftrightarrow x=2y-1\)
Thế lại phương trình ban đầu ta được.
\(\Rightarrow y=3\)
\(\Rightarrow x=5\)
Vậy nghiệm cần tìm là \(\hept{\begin{cases}x=5\\y=3\end{cases}}\)
11x5 −√2x+1=3y−√4y−1+2
⇔√4y−1−√2x+1=3y+2−11x5
Vì 4y - 1 chia cho 4 có số dư là 2 nên √4y−1là số vô tỷ .
Ta có VP là số hữu tỉ. VT là số vô tỷ và {
4y−1 |
2x+1 |
là 2 số hữu tỷ nên.
⇒√4y−1−√2x+1=0
⇔x=2y−1
Thế lại phương trình ban đầu ta được.
⇒y=3
⇒x=5
Vậy nghiệm cần tìm là {
x=5 |
y=3 |
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))
Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)
\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)
\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)
\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)
Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)
đặt 2x+3=a
\(y\sqrt{y}+y=a\sqrt{a}+a\)
=>\(\left(\sqrt{y}-\sqrt{a}\right)\left(y+\sqrt{ay}+a+\sqrt{a}+\sqrt{y}\right)=0\)
=>\(\sqrt{y}=\sqrt{a}\Rightarrow y=2x+3\)
thay vào Q tìm min là xong
1./ Với mọi y nguyên thì: 4y - 1 nguyên và không phải số chính phương.
(vì ngược lại nếu 4y - 1 = m2 => m lẻ => 4y - 1 = (2k + 1)2 => 4y = 4k2 + 4k + 2. VT chia hết cho 4, VP không chia hết cho 4).
=> \(\sqrt{4y-1}\)là 1 số vô tỷ.
2./ Viết PT trở thành: \(\frac{11x}{5}-3y-2=\sqrt{2x+1}-\sqrt{4y-1}\)(2)
Đặt \(A=\frac{11x}{5}-3y-2\)(2) trở thành: \(A+\sqrt{4y-1}=\sqrt{2x+1}\). Bình phương 2 vế:
\(A^2+4y-1+2A\sqrt{4y-1}=2x+1\)
\(\Rightarrow2A\sqrt{4y-1}=2x+2-A^2-4y\)(3)
VT(3) là số vô tỷ để "=" VP(3) là 1 số hữu tỷ thì A = 0.
3./ Do đó: \(\sqrt{4y-1}=\sqrt{2x+1}\Rightarrow2x+1=4y-1\Rightarrow x=2y-1\)
Và: \(0=\frac{11x}{5}-3y-2\Rightarrow11\left(2y-1\right)-15y-10=0\Rightarrow y=3\Rightarrow x=5\).
4./ Phương trình có nghiệm nguyên duy nhất x = 5; y = 3.