Tìm số nguyên dương x,y biết : 8(x-2005)2+y2-25=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\left|x-2017\right|=25-y^{2\text{}}\)
\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)
Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)
Bài bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ có vài chỗ sai xót cần sửa lại
Còn đây là cách của mình
Để A= \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên
thì đồng thời \(\sqrt{\frac{2005}{x+y}}\);\(\sqrt{\frac{2005}{y+z}}\);\(\sqrt{\frac{2005}{x+z}}\)là số hữu tỉ
Xét \(\sqrt{\frac{2005}{x+y}}\)là số hữu tỉ
+ \(2005⋮x+y\)
Do 2005 có duy nhất ước 1 là số chính phương
=> \(x+y=2005\)
Khi đó \(A=1+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số chính phương khi \(\sqrt{\frac{2005}{y+z}}=\sqrt{\frac{2005}{x+z}}=1\)hoặc\(=\frac{1}{2}\)
=> \(x=y=\frac{2005}{2}\)loại
+ \(x+y⋮2005\)và \(x+y\ne2005\)
=> \(x+y=2005.k^2\)( \(k\inℕ^∗,k>1\))
Tương tự :\(y+z=2005.h^2\)
\(x+z=2005.g^2\)( \(h,g\inℕ^∗;h,g>1\)=> \(2\left(x+y+z\right)=2005\left(k+h+g\right)\)
=> \(A=\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\)
Mà \(A\ge1\)
=> \(\frac{3}{2}\ge\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\ge1\)
=> \(\frac{1}{k}+\frac{1}{h}+\frac{1}{g}=1\)
Giả sử \(k\ge h\ge g\)=> \(\frac{1}{k}\le\frac{1}{h}\le\frac{1}{g}\)
=> \(1\le\frac{3}{g}\)=> \(g\le3\)Mà g>1 => \(g\in\left\{2;3\right\}\)
Với \(g=2\)=> \(k+h\)chẵn => \(\frac{1}{k}+\frac{1}{h}=\frac{1}{2}\)=> \(\frac{h+k}{k.h}=\frac{1}{2}\)=> \(k.h\)chẵn => k ; h chẵn
\(\frac{1}{2}\le\frac{2}{h}\)=> \(h\le4\)=> \(h\in\left\{2;4\right\}\)
Thay vào ta được \(h=4;k=4\)
Khi đó \(\hept{\begin{cases}x+y=2005.4\\y+z=2005.16\\x+z=2005.16\end{cases}}\)= >\(\hept{\begin{cases}x=2005.2\\y=2005.2\\z=2005.14\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left(2005.2;2005.2;2005.14\right)\)và các hoán vị
Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì
\(\hept{\begin{cases}\frac{2005}{x+y}\\\frac{2005}{y+z}\\\frac{2005}{x+z}\end{cases}}\)là bình phương của 1 số hữu tỉ
Gỉa sử đặt \(\frac{2005}{x+y}=\left(\frac{a}{b}\right)^2\Leftrightarrow\frac{a^2\left(x+y\right)}{b^2}=2005\)
\(\Rightarrow\orbr{\begin{cases}a^2⋮2005\\x+y⋮2005\end{cases}}\)
Xét \(a^2⋮2005\Rightarrow a^2=2005k\left(k\inℕ^∗\right)\)
\(\Rightarrow\frac{2005}{x+y}=\frac{2005k}{b^2}\)\(\Rightarrow b^2=\left(x+y\right)k\)
mà x,y nguyên dương=> x+y=k
\(\Rightarrow b^2⋮2005\)\(\Rightarrow x+y⋮2005\)\(\Rightarrow x+y=2005\)
Tương tự y+z=z+x=2005
Thay vào ta thấy không có giá trị x,y,z thỏa mãn đề bài
Xét \(x+y⋮2005\)
\(\Rightarrow\frac{2005}{x+y}=\frac{1}{h^2}\left(h\inℕ^∗\right)\)
Tương tự \(\frac{2005}{y+z}=\frac{1}{m^2},\frac{2005}{x+z}=\frac{1}{n^2}\left(m,n\inℕ^∗\right)\)
Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì
\(\frac{1}{h}+\frac{1}{m}+\frac{1}{n}⋮3\)
\(\Rightarrow2005⋮3\)(vô lí)
Vậy không có giá trị x,y,z nguyên dương thỏa mãn đề bài
P/s: Em không biết đúng không nữa, mong cô sửa hộ
Vì \(x\)nguyên nên \(\left(x-2005\right)^2\)nguyên.
Nếu \(\left(x-2005\right)^2=0\Leftrightarrow x=2005\): phương trình ban đầu tương đương với:
\(y^2-25=0\Leftrightarrow y=\pm5\)
Nếu \(\left(x-2005\right)^2=1\Leftrightarrow\orbr{\begin{cases}x=2006\\x=2004\end{cases}}\), phương trình ban đầu tương đương với:
\(8+y^2-25=0\Leftrightarrow y=\pm\sqrt{17}\)(không thỏa mãn)
Nếu \(\left(x-2005\right)^2=2\Leftrightarrow x=2005\pm\sqrt{2}\)(loại)
Nếu \(\left(x-2005\right)^2=3\Leftrightarrow x=2005\pm\sqrt{3}\)(loại)
Nếu \(\left(x-2005\right)^2\ge4\):
\(y^2-25=-8\left(x-2005\right)^2\le-8.4=-32\Leftrightarrow y^2\le-7\)(vô nghiệm)
Vậy các cặp \(\left(x,y\right)\)thỏa mãn là: \(\left(2005,5\right);\left(2005,-5\right)\).