|x+1/1.2|+|x+1/2.3+|x+1/3.4|+....+|x+1/99.100|=100x. Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{99\cdot100}=100x\)
\(50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(50x=1-\frac{1}{100}\)
\(50x=\frac{99}{100}\)
\(x=\frac{99}{5000}\)
Do \(\left|a\right|\ge0\forall a\) nên:
\(A=\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\forall x\)
\(\Leftrightarrow100x\ge0\) hay \(x\ge0\)
Do vậy ta có: \(A=\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\) ( 50 chữ số x)
\(\Leftrightarrow A=50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(\Leftrightarrow50x+\left(1-\frac{1}{100}\right)=100x\Leftrightarrow50x+\frac{99}{100}=100x\)
\(\Leftrightarrow50x=\frac{99}{100}\Leftrightarrow x=\frac{99}{100.50}=\frac{99}{5000}\)
các giá trị tuyệt đối trên có tổng lớn hơn hoặc bằng 0(>=0)
=>100x>=0
=>x>=0 =>x+1/(1.2) >0 ;x+1/(2.3)>0;x+1/(3.4);.....;x+1/(99.100)>0
=> ta có thể phá dấu giá trị tuyệt đối
=>100x=x+x+...+x(có 99. x)+(1/(1.2)+1/(2.3)+..+1/(99.100))
=>100x=99x+99/100
=>x=99/100
a) \(2^x+2^{x+1}2^{x+2}=112\)
\(2^x.\left(1+2+4\right)=112\)
\(2^x=112:7=16\)
Mà \(2^4=16\)
\(\Rightarrow2^x=2^4\)
Vậy x = 4
b) \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...\left|x+\frac{1}{99.100}\right|=100x\)
Vì \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;....\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow\left(x+x+...x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)
\(\Rightarrow100x+\left(1-\frac{1}{100}\right)=100x\)
\(\Rightarrow\frac{99}{100}=x\)
a, \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Rightarrow\frac{1}{2^x}+\frac{1}{2^x}\cdot\frac{1}{16}=17\)
\(\Rightarrow\frac{1}{2^x}\left(1+\frac{1}{16}\right)=17\)
\(\Rightarrow\frac{1}{2^x}\cdot\frac{17}{16}=17\)
\(\Rightarrow\frac{1}{2^x}=17:\frac{17}{16}=\frac{1}{16}=\frac{1}{2^4}\)
=> x = 4
b, Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;....;\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+...+x+\frac{1}{99.100}=100x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)
\(\Rightarrow99x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=100x\)
\(\Rightarrow100x-99x=1-\frac{1}{100}\)
\(\Rightarrow x=\frac{99}{100}\)
Ta có
\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
\(\left|x+x+...x\right|+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=100x\)
\(\left|99x\right|+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(\left|99x\right|+\left(\frac{1}{1}-\frac{1}{100}\right)=100x\)
\(\left|99x\right|+\frac{99}{100}=100x\)
Sau đó tự biến đổi nha! Mik chỉ giải tới đó thôi vì mới lớp 6 à!
\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{99\cdot100}\right|=100x\)
có :
\(\left|x+\frac{1}{1\cdot2}\right|;\left|x+\frac{1}{2\cdot3}\right|;\left|x+\frac{1}{3\cdot4}\right|;...;\left|x+\frac{1}{99\cdot100}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge\frac{0}{100}\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\)
\(=x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+x+\frac{1}{3\cdot4}+...+x+\frac{1}{99\cdot100}\)
bước này tự lm tp
Do mỗi số hạng ở vế trái nằm trong dấu giá trị tuyệt đối mà vế phải 100 là số dương nên x cũng phải dương.
Do x dương và trong mỗi dấu giá trị tuyệt đối đều dương nên ta lập được kết quả sau:
x+1/1.2+x+1/2.3+1/3.4+....+x+1/99.100=100x
Dãy trên có 99 số x nên:
99x+(1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100)=100x
1-1/100=x
x=99/100
Vậy x=99/100
Chúc em học tốt^^