cho x+y+z=6 và x^2+y^2+z^2=12 tính x,y,z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x2+y2+z2=12;x+y+z=6⇒3(x2+y2+z2)−(x+y+z)2=0⇔3(x2+y2+z2)−(x2+y2+z2+2xy+2xz+2yz)=0⇔2x2+2y2+2z2−2xy−2xz−2yz=0⇔(x−y)2+(y−z)2+(z−x)2=0(1)x2+y2+z2=12;x+y+z=6⇒3(x2+y2+z2)−(x+y+z)2=0⇔3(x2+y2+z2)−(x2+y2+z2+2xy+2xz+2yz)=0⇔2x2+2y2+2z2−2xy−2xz−2yz=0⇔(x−y)2+(y−z)2+(z−x)2=0(1)
Mà (x−y)2,(y−z)2,(z−x)2≥0,∀x,y,z(x−y)2,(y−z)2,(z−x)2≥0,∀x,y,z
⇒(x−y)2+(y−z)2+(z−x)2≥0,∀x,y,z⇒(x−y)2+(y−z)2+(z−x)2≥0,∀x,y,z
→(1)→(1) đúng chỉ khi dấu bằng xảy ra
(x−y)2=(y−z)2=(z−x)2=0⇔x−y=y−z=z−x=0⇔x=y=z(x−y)2=(y−z)2=(z−x)2=0⇔x−y=y−z=z−x=0⇔x=y=z
Mà x+y+z=6x+y+z=6⇒x=y=z=2⇒x=y=z=2\, suy ra A=10
Áp dụng bđt bunhia cho 2 bộ số (1 ; 1 ; 1) và (x ; y ; z) ta có:
(1 + 1 + 1).(x² + y² + z²) ≥ (x + y + z)²
<=> 3(x² + y² + z²) ≥ 36 < do x+y+z=6 theo đề bài >
<=> x² + y² + z² ≥ 12 => đpcm
Dấu "=" xảy ra <=> x = y = z = 2
-----------------------------
2) xy/z + yz/x + zx/y ≥ x + y + z với x,y,z là các số thực dương
Áp dụng bđt cô si cho 2 số thực dương ta có:
xy/z + yz/x ≥ 2y
yz/x + zx/y ≥ 2z
xy/z + zx/y ≥ 2x
Cộng vế với vế 3bđt trên ta được :
xy/z + yz/x + zx/y ≥ x + y + z => đpcm
Dấu "=" xảy ra <=> x = y = z
-----------------------------------
3) x² + 5y² - 4xy + 2x - 6y +3 > 0 với mọi x , y
<=> (x² - 4xy + 4y²) + (2x - 4y) + 1 + (y² -2y + 1) + 1 > 0
<=> [(x - 2y)² + 2(x - 2y) + 1] + (y - 1)² + 1 > 0
<=> (x - 2y + 1)² + (y - 1)² + 1 > 0 => luôn đúng với mọi x,y
=> đpcm
Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Dấu "=" xảy ra khi: x = y = z
Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)
\(\Rightarrow x=y=z=2\)
Vậy x = y = z = 2
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
Thay số vào tính được \(xy+yz+xz=12\)
Ta có: \(x^2+y^2+z^2=xy+yz+xz\left(=12\right)\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Từ đó được \(x=y=z\)
Mà \(x+y+z=6\Rightarrow x=y=z=2\)
Chúc bạn học tốt.
bài này hoàn toàn có thể cosi dù đề bài chưa cho dương hoac su dung bunhia ngc ( thi ko can quan tam duong hay am)
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
\(x+y+z=6\Rightarrow\left(x+y+z\right)^2=36\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=36\)
\(\Rightarrow xy+yz+zx=\frac{36-\left(x^2+y^2+z^2\right)}{2}=\frac{36-12}{2}=12=x^2+y^2+z^2\)(1)
Mặt khác ta luôn có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
hay: \(2x^2+2y^2+2z^2-2\left(xy+yz+zx\right)\ge0\)
hay: \(x^2+y^2+z^2\ge xy+yz+zx\)
Vậy để đẳng thức (1) xảy ra thì x = y = z = 2.