K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Ta có:

\(1-\frac{-2015}{-2016}=1-\frac{2015}{2016}=\frac{1}{2016}\)

\(1-\frac{-2016}{-2017}=1-\frac{2016}{2017}=\frac{1}{2017}\)

Vì \(\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{-2015}{-2016}< \frac{-2016}{-2017}\)

Đây là cách so sánh phần bù, bạn có thể lên mạng tham khảo thêm nhé :)

25 tháng 9 2019

trả lời lẹ cho tui cấy

16 tháng 7 2016

a+b+c=0

=>a+b=-c;b+c=-a;a+c=-b

Thay a+b=-c;b+c=-a;a+c=-b là M ta được:\(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1-1-1=-3\)

4 tháng 12 2017

Ta có: \(VT=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ca}+\frac{c^2}{ca+cb}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

\(\RightarrowĐPCM\)

15 tháng 6 2020

Đặt \(f\left(a,b,c\right)=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)và \(t=\frac{a+b}{2}\)

Khi đó thì \(f\left(t,t,c\right)=\frac{t}{t+c}+\frac{t}{t+c}+\frac{c}{2t}=\frac{2t}{t+c}+\frac{c}{2t}\)

Ta có: \(f\left(a,b,c\right)=\frac{\left(a^2+b^2\right)+c\left(a+b\right)}{c^2+ab+c\left(a+b\right)}+\frac{c}{a+b}\)\(=\frac{4\left(a^2+b^2\right)+4c\left(a+b\right)}{4c^2+4ab+4c\left(a+b\right)}+\frac{c}{a+b}\)

\(\ge\frac{2\left(a+b\right)^2+4c\left(a+b\right)}{4c^2+\left(a+b\right)^2+4c\left(a+b\right)}+\frac{c}{a+b}\)\(=\frac{8t^2+8tc}{4c^2+4t^2+8tc}+\frac{c}{2t}\)

\(=\frac{2t^2+2tc}{c^2+t^2+2tc}+\frac{c}{2t}=\frac{2t\left(t+c\right)}{\left(t+c\right)^2}+\frac{c}{2t}\)\(=\frac{2t}{t+c}+\frac{c}{2t}=f\left(t,t,c\right)\)

Do đó \(f\left(a,b,c\right)\ge f\left(t,t,c\right)\)

Ta cần chứng minh: \(f\left(t,t,c\right)=\frac{2t}{t+c}+\frac{c}{2t}\ge\frac{3}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(t-c\right)^2}{2t\left(t+c\right)}\ge0\)(đúng)

Đẳng thức xảy ra khi a = b = c

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

13 tháng 7 2017

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

29 tháng 9 2019

Chia hai vế của BĐT \(ab^2+bc^2+ca^2\ge3abc\) cho abc > 0 là ok liền hà! (bđt trên đã được chứng minh tại Câu hỏi của tth_new)

20 tháng 3 2020

BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )

Vậy.......