K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

A B C D E F K I

a,VÌ AD là p/g của ^A nên ^EAD = ^IAD =  \(\frac{1}{2}\)^ EAI = \(\frac{1}{2}\cdot60^o=30^o\)

Xét tam giác vuông EAD và tam giác vuông IAD ta có: ^EAD = ^IAD ; chung AD 

Nên tam giác vuông AED = tam giác vuông IAD (cạnh huỳen - góc nhọn)

do đó DE = DF (2 cạnh tương ứng) nên tam giác DEF cân tại D \(\left(1\right)\)

Do đó ^ADE = ^IDA =\(30^o\)mà ^EDI = ^ADE + ^IDA = \(30^o+30^o=60^o\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)-> tam giác DEF đều. (ĐPCM)

b, Xét tam giác vuông DEF và tam giác vuông DEI, ta có:  DE = DF ; KE = FI

nên tam giác vuông DEF = tam giác vuông DEI (2 cạnh góc vuông)

do đó  DK = DI (2 cạnh tương ứng)

Nên tam giác DKI cân tại D (ĐPCM)

30 tháng 3 2017

Giúp mình bài này đi ạ! 

a) Xét ΔAED vuông tại E và ΔAFD vuông tại F có 

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(AD là tia phân giác của \(\widehat{EAF}\))

Do đó: ΔAED=ΔAFD(cạnh huyền-góc nhọn)

Suy ra: DE=DF(Hai cạnh tương ứng)

Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)

nên \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)

hay \(\widehat{EAD}=\widehat{FAD}=60^0\)

Ta có: ΔAED vuông tại E(gt)

nên \(\widehat{EAD}+\widehat{EDA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{EDA}=90^0-60^0=30^0\)

Ta có: ΔAFD vuông tại F(Gt)

nên \(\widehat{FAD}+\widehat{FDA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{FDA}=90^0-60^0=30^0\)

Ta có: \(\widehat{EDA}+\widehat{FDA}=\widehat{EDF}\)(tia DA nằm giữa hai tia DE và DF)

\(\Leftrightarrow\widehat{EDF}=30^0+30^0\)

hay \(\widehat{EDF}=60^0\)

Xét ΔDEF có DE=DF(cmt)

nên ΔDEF cân tại D(Định nghĩa tam giác cân)

Xét ΔDEF cân tại D có \(\widehat{EDF}=60^0\)(cmt)

nên ΔDEF đều(Dấu hiệu nhận biết tam giác đều)

18 tháng 3 2021

CÒN CÂU B,C 

MÌNH CẦN GẤP

hỏi từ năm trước xong mốc meo không ai trả lời mới chán chớ..

12 tháng 3 2020

Sửa đề △ABC có ^CAB = 120o thì mới chứng minh △DEF đều được.

a, Xét △FDA vuông tại F và △EDA vuông tại E

Có: DA là cạnh chung

      ^FAD = ^EAD (gt)

=> △FDA = △EDA (ch-gn)

=> DF = DE (2 cạnh tương ứng)

=> △DEF cân tại D   (1)

Vì AD là phân giác ^CAB => ^CAD = ^BAD = ^CAB : 2 = 120o : 2 = 60o

Xét △FAD vuông tại F có: ^FAD + ^FDA = 90o (tổng 2 góc nhọn trong tam giác vuông)

=> 60o + ^FDA = 90o  => ^FDA = 30o  

Mà ^FDA = ^EDA (△FDA = △EDA)  => ^EDA = 30o

Ta có: ^FDE = ^FDA + ^EDA = 30o + 30o = 60o  (2)

Từ (1) và (2) => △DEF đều

b, Ta có: AI = AF + FI  và AK = AE + EK

Mà AF = AE (△FDA = △EDA) ; FI = EK (gt)

=> AI = AK

Xét △IAD và △KAD 

Có: AI = AK (cmt)

  ^IAD = ^KAD (gt)

   AD là cạnh chung

=> △IAD = △KAD (c.g.c)

=> ID = KD (2 cạnh tương ứng)

=> △IDK cân tại D

c, AD // CM (gt) => ^DAB = ^CMB (2 góc đồng vị)

Mà ^DAB = 60o  => ^CMB = 60 => ^CMA = 60o  (3)

Ta có: ^CAM + ^CAB = 180o (2 góc kề bù)

=> ^CAM + 120o = 180o   => ^CAM = 60o   (4)

Từ (3) , (4) => ^CMA = ^CAM => △CMA cân tại C mà ^CMA = 60o  => △MAC đều 

=> AC = AM = MC

Vì △ vuông FAD có: ^FDA = 30o (cmt)

=> AD = 2 . AF 

=> AD = 2 . (AC - CF)

=> AD = 2 . (CM - CF) = 2 . (m - n)

9 tháng 1 2016

this sentence extremely easy

9 tháng 1 2016

hahahahahahahahihihihihihihhehehehehehehehuhuhuhuhuhuhhhahahahahaahahahahahahahahahahahchchchchchchhchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdcjertfr8yvgrvcfhvrigy4olgth4786ty8n+tynyn4mj4m765u45ik87i547113jrghrhygutgeytfgryfeyftruyrrtgteyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddđ

 

 

 

 

 

 

 

 

uyuuu

 

 

 

cd

 

 

 

c

 

 

c

 

c

c

c

c

c

c

c

c

c

c

 

c

c

c

cc

c

c

c

c

c

c

c

c

c

c

c

c

 

c

c

c

c

cc

c

 

cc

c

c

c

c

c

 

c

c

cc

c

c

c

c

 

c

c

c

c

c

c

c

c

c

cc

 

c

cc

c

c

c

 

cc

c

 

cc

c

c

c

c

 

c

c

 

cc

 

c

c

31 tháng 1 2016

mk , ko biết

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.