K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2022

bằng 5 nhé 

11 tháng 3 2022

\(2.\left(x-5\right)\left(x+2\right)=x^2-5x\)

\(\Leftrightarrow2.\left(x^2+2x-5x-10\right)=x^2-5x\)

\(\Leftrightarrow2x^2+4x-10x-20=x^2-5x\)

\(\Leftrightarrow2x^2-x^2+4x-10x+5x-20=0\)

\(\Leftrightarrow x^2-x-20=0\)

\(\Leftrightarrow x^2-5x+4x-20=0\)

\(\Leftrightarrow x.\left(x-5\right)+4.\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+4\right).\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=5\end{cases}}}\)

Vậy....

11 tháng 5 2023

`|5x| = - 3x + 2`

Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :

`5x =-3x+2`

`<=> 5x +3x=2`

`<=> 8x=2`

`<=> x= 2/8=1/4` ( thỏa mãn )

Nếu `5x<0<=>x<0` thì phương trình trên trở thành :

`-5x = -3x+2`

`<=>-5x+3x=2`

`<=> 2x=2`

`<=>x=1` ( không thỏa mãn ) 

Vậy pt đã cho có nghiệm `x=1/4`

__

`6x-2<5x+3`

`<=> 6x-5x<3+2`

`<=>x<5`

Vậy bpt đã cho có tập nghiệm `x<5`

20 tháng 8 2021

\(5x^2-x+5=\sqrt{x^4+x^2+1}\)

\(\Leftrightarrow5x^2-x+5=\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(a=\sqrt{x^2-x+1};b=\sqrt{x^2+x+1}\left(a;b>0\right)\)

Pt tt: \(3a^2+2b^2=ab\)

\(\Leftrightarrow3a^2-ab+2b^2=0\) 

\(\Leftrightarrow3\left(a-\dfrac{b}{6}\right)^2+\dfrac{23}{12}b^2=0\)(vô nghiệm)

Vậy pt vô nghiệm

cho mình hỏi, làm để nào để phân tích\(\sqrt{x^4+x^2+1}\) ra \(\sqrt{\left(x^2-x+1\right).\left(x^2+x+1\right)}\)  vậy? 

 

20 tháng 10 2021

TL:

ĐKXĐ:x≠1;x≠5ĐKXĐ:x≠1;x≠5

x2−3x+5x2−4x+5−x2−5x+5x2−6x+5=−14x2−3x+5x2−4x+5−x2−5x+5x2−6x+5=−14

⇔4(x2−6x+5)(x2−3x+5)−4(x2−4x+5)(x2−5x+5)+(x2−4x+5)(x2−6x+5)4(x2−4x+5)(x2−6x+5)=0⇔4(x2−6x+5)(x2−3x+5)−4(x2−4x+5)(x2−5x+5)+(x2−4x+5)(x2−6x+5)4(x2−4x+5)(x2−6x+5)=0

Từ chỗ này xuống cậu tự phân tích tử thức ròi rút gọn nhé ! Vì hơi dài nên tớ sẽ k viết.

⇔−10x3+26x2−50x+x4+25=0⇔−10x3+26x2−50x+x4+25=0

⇔x4−8x3+5x2−2x3+16x2−10x+5x2−40x+25=0⇔x4−8x3+5x2−2x3+16x2−10x+5x2−40x+25=0

⇔x2(x2−8x+5)−2x(x2−8x+5)+5(x2−8x+5)=0

^HT^

Giải phương trình là cậu phải tìm nghuêmj chứ
13 tháng 8 2021

ĐK: mọi x thuộc R

Ta có:\(x^2+5x+9=\left(x+5\right)\sqrt{x^2+9}\)

   \(\Leftrightarrow\left(x+5\right)\sqrt{x^2+9}-x^2-5x-9=0\)

   \(\Leftrightarrow\left(x+5\right)\left(\sqrt{x^2+9}-5\right)-\left(x^2-16\right)=0\)

   \(\Leftrightarrow\left(x+5\right).\dfrac{x^2-16}{\sqrt{x^2+9}+5}-\left(x-4\right)\left(x+4\right)=0\)

   \(\Leftrightarrow\left(x+5\right).\dfrac{\left(x-4\right)\left(x+4\right)}{\sqrt{x^2+9}+5}-\left(x-4\right)\left(x+4\right)=0\)

   \(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(\dfrac{x+5}{\text{​​}\sqrt{x^2+9}+5}-1\right)=0\)

   \(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\\dfrac{x+5}{\text{​​}\sqrt{x^2+9}+5}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\\dfrac{x+5}{\text{​​}\sqrt{x^2+9}+5}=1\left(1\right)\end{matrix}\right.\)

Giải (1) ta có:

\(\left(1\right)\Leftrightarrow x+5=\sqrt{x^2+9}+5\)

     \(\Leftrightarrow x=\sqrt{x^2+9}\)

     \(\Leftrightarrow x^2=x^2+9\)

     \(\Leftrightarrow0=9\) (vô lí)

Vậy phương trình có 2 nghiệm là ... 

a: \(\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: \(\Leftrightarrow4x^4-9x^2+4x^2-9=0\)

\(\Leftrightarrow4x^2-9=0\)

=>x=3/2hoặc x=-3/2

18 tháng 3 2022

\(a,2x-5=-x+4\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\\ b,\left(4x-10\right)\left(25+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\25+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-5\end{matrix}\right.\\ c,\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\\ \Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}-\dfrac{x}{6}+\dfrac{6x}{6}=0\\ \Leftrightarrow2x-6x-3-x+6x=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)

d, ĐKXĐ:\(x\ne-2,x\ne3\)

\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}+\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6}{\left(x+2\right)\left(3-x\right)}+\dfrac{x^2+2x}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{6-2x}{\left(x+2\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{-x^2+x+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\\ \Rightarrow0=0\left(luôn.đúng\right)\)

20 tháng 7 2021

undefined