K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

có vài chỗ ko thấy

 

23 tháng 10 2021

a: ta có: \(P=x^2+10x+27\)

\(=x^2+10x+25+2\)

\(=\left(x+5\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-5

22 tháng 12 2021

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

22 tháng 12 2021

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

NV
23 tháng 12 2020

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

26 tháng 12 2021

\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)

Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)

\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)

\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)

8 tháng 7 2018

<=> xaa ) C= x2-6x + 11= (x-3)2 +2

ta co : (x-3)2 + > hoặc = 2

=> C đạt giá trị nhỏ nhất khi C=2

<=> x=3

b) D =(x-1) (x+2)(x+3)(x+6)

= [ (x-1)(x+6)][(x+2)(x+3)]

=(x2 +5x -6)(x2+5x +6)

=(x2+5x )2 - 36

ta có (x2 +5x)2 -36 luôn > hoặc = -36

=> D đạt GTNN khi D = -36

<=>(x2 + 5x)2 =0

=> x = 0 hoac x =-5

c) E = x2 - 4x + y2 - 8y + 6

=(x2 -4x +4 ) + (y2 - 8y +16 ) -14

= (x -2)2 +( y-4)2 -14

ta co (x-2)2 + (y-4)2 -14 luôn > hoặc = -14

=> E dat GTNN khi E = -14

<=> (x-2)2​ =0 va (y-4)2 =0

<=> x =2 va y=4

d) G =x2 -4xy +5y2 + 10x -22y + 28 ( de sai nha ban )

= [(x2 - 4xy + 4y2 ) + 10x -20y +25 ]+ ( y2 -2y +1 ) +2

= [(x-2y)2 + 10x - 20y + 25 ] + (y-1)2 +2

= [( x-2y)2 + 2. 5 (x-2y) + 25 ] + (y-1)2 +2

= (x-2y +5)2 + ( y-1)2 +2

ta co (x-2y +5 )2 + (y-1)2 +2 luôn > hoặc = 0

=> G đạt GTNN khi (x-2y+5 )2=0 hoac (y-1)2 =0

<=> y-1 = 0 => y = 1

,=> x =-3

10 tháng 7 2018

- thanks bạn :v

27 tháng 3 2017

a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .  

b) Ta có N = ( x   +   2 y ) 2   +   ( y   –   2 ) 2   +   ( x   +   4 ) 2   –   120   ≥   -   120 .

Tìm được N min  = -120 Û x = -4 và y = 2.