Cho 4x/2x+y = 8 và 9x+y/3y = 243(y;x là số tự nhiên)
Tìm x.y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x=3y<=>\frac{x}{3}=\frac{y}{4}=>\frac{x}{15}=\frac{y}{20}\)
\(7y=5z<=>\frac{y}{5}=\frac{z}{7}=>\frac{y}{20}=\frac{z}{28}\)
Ap dung tinh chat bac cau ta duoc:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=>\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
=> x = 45 ; y=60 ; z=84
a: \(=8x^3-y^3\)
b: \(=2x^2-3xy+5y^2\)
c: \(=\dfrac{2x^3+10x^2-31x^2-155x+222x+1110-1170}{x+5}\)
\(=2x^2-31x+222+\dfrac{-1170}{x+5}\)
e: \(=\dfrac{\left(3x-2\right)\left(9x^2+6x+4\right)}{9x^2+6x+4}=3x-2\)
\(\frac{4^x}{2^{x+y}}=8=>\frac{\left(2^2\right)^x}{2^x.2^y}=8=>\frac{2^{2x}}{2^x.2^y}=8=>\frac{1}{2^y}=8=>2^y=\frac{1}{8}\)
\(=>2^y=\frac{1}{2^3}=2^{-3}=>y=-3\)\(\frac{9^{x+y}}{3^y}=243=>\frac{9^x.9^y}{3^y}=243=>\frac{9^x.\left(3^2\right)^y}{3^y}=243=>\frac{9^x.3^{2y}}{3^y}=243\)
\(=>\frac{9^x.3^y.3^y}{3^y}=243=>\left(3^2\right)^x.3^y=243=>3^{2x}.3^y=243=>3^{2x+y}=3^5=>2x+y=5\)
\(=>2x=5-y=5-\left(-3\right)=8=>x=4\)
Vậy x=4;y=-3