Các bạn giúp mình bài này nhé
cho 100 số dạng x1, x2,......,x100
Ta có : x12 + x22 + .....+x1002 > 10000
và x1 + x2 + .......+ x100 < 300
CMR : tồn tại 3 số có tổng >100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để pt có nghiệm thì $\Delta'=4-m\geq 0\Leftrightarrow m\leq 4$
Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=4$
$x_1x_2=m$
Khi đó:
$x_2^2-x_1^2=18$
$\Leftrightarrow (x_2-x_1)(x_2+x_1)=18$
$\Leftrightarrow (x_2-x_1).4=18$
$\Leftrightarrow x_2-x_1=4,5$
$\Rightarrow (x_2-x_1)^2=20,25$
$\Leftrightarrow (x_2+x_1)^2-4x_1x_2=20,25$
$\Leftrightarrow 4^2-4m=20,25$
$\Leftrightarrow m=\frac{-17}{16}$ (tm)
Đáp án C.
Tập xác định: R
y = x3 – 3x + 1 => y’ = 3x2 – 3 <=> x = ± 1.
Vậy hai điểm cực trị thỏa mãn: x12 + x22 = 2
Giả sử pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1^2+x_2^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=-1\\m=-1\end{matrix}\right.\)
Δ=(-2)^2-4(m-3)
=4-4m+12=-4m+16
Để pt có hai nghiệm thì -4m+16>=0
=>-4m>=-16
=>m<=4
x1^2+x2^2-x1x2<7
=>(x1+x2)^2-3x1x2<7
=>2^2-3(m-3)<7
=>4-3m+9<7
=>-3m+13<7
=>-3m<-6
=>m>2
=>2<m<=4
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2