cho parabol (P) :\(y=\frac{1}{3}x^2\)
tìm quỹ tích các điểm M để từ đó có thể kẻ được 2 tiếp tuyến của parabol (P) và 2 tiếp tuyến này vuông góc với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d2: y=ax +b\(\left(a\ne0\right)\) là tiếp tuyến của (P) nên d2 tx với (P) và d đi qua A(2;1)\(\Rightarrow2a+b=1\Rightarrow b=1-2a\);\(\dfrac{1}{3}x^2-ax-b=0\) có \(\Delta=0\Rightarrow a^2+\dfrac{4}{3}b=0\)\(\Rightarrow3a^2+4b=0\Rightarrow3a^2+4-8a=0\)\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\dfrac{2}{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}b=-3\\b=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy đó là đường thẳng d2:y=2x-3 hoặc y=\(\dfrac{2}{3}x-\dfrac{1}{3}\)
Xét điểm \(M\left(m;0\right)\in Ox\).
Đường thẳng d đi qua M, hệ số góc k có phương trình : \(y=k\left(x-m\right)\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}-x^3+3x+2=k\left(x-m\right)\\-3x^2+3=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(3\left(x^2-1\right)\left(x-m\right)-\left(x^3-3x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2-3\left(1+m\right)x+3m\right)-\left(x+1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2x^2-\left(3m+2\right)x+3m+2\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\2x^2-\left(3x+2\right)x+3m+2=0\left(a\right)\end{array}\right.\)
Để từ M kẻ được 3 tiếp tuyến thì (a) phải có 2 nghiệm phân biệt khác -1
\(\begin{cases}\Delta=\left(3m+2\right)\left(3m-6\right)>0\\3m+3\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< -\frac{2}{3}Vm>2\\m\ne-1\end{cases}\) (*)
Gọi \(x_1;x_2\) là 2 nghiệm của (a), khi đó hệ số góc của 3 tiếp tuyến là :
\(k_1=-3x_1^2+3;k_2=-3x_2^2+3;k_3=0\)
Để 2 trong 3 tiếp tuyến này vuông góc với nhau \(\Leftrightarrow k_1.k_2=-1\)
\(\Leftrightarrow9\left(x^2_1-1\right)\left(x^2_2-1\right)=1\Leftrightarrow9x^2_1x^2_2-9\left(x_1+x_2\right)^2+18x_1x_2+8=0\left(i\right)\)
Mặt khác, theo định lý Viet, \(x_1+x_2=\frac{3m+2}{2};x_1x_2=\frac{3m+2}{2};\)
Từ đó (i) \(\Leftrightarrow9\left(3m+2\right)+8=0\Leftrightarrow m=-\frac{26}{27}\) thỏa mãn điều kiện (*)
Vậy \(M\left(-\frac{26}{27};0\right)\) là điểm cần tìm
Gọi \(M=\left(m;m+5\right)\left(m\in\right)R\) là điểm cần tìm.
\(\Rightarrow IM=\sqrt{2m^2+32}\)
Ta có: \(cos\left(AM;IM\right)=cos45^o\)
\(\Leftrightarrow\dfrac{R}{IM}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{2m^2+32}}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\) vô nghiệm
Vậy không tồn tại điểm M thỏa mãn yêu cầu bài toán.
mk làm ra M thuộc đường thẳng y=3/4 ko biết có đúng ko các bạn kiểm tra cho mk với