Từ điểm A nằm ngoài đường tròn (O;R) vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên bán kính OC lấy điểm M. Tia AM cắt (O) tại D và E (D nằm giữa A và E). Đoạn thẳng OA cắt BC tại H.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh AC2=AD.AE.
c) Chứng minh góc AHD = góc AEO
d) Vẽ đường thẳng qua O vuông góc với DE và vẽ tiếp tuyến của đường tròn (O) tại E. Hai đường thẳng này cắt nhau tại I. Chứng minh B, C, I thẳng hàng.
a) Xét (O):
AB là tiếp tuyến; B là tiếp điểm (gt). \(\Rightarrow\widehat{ABO}=90^o.\)
AC là tiếp tuyến; C là tiếp điểm (gt). \(\Rightarrow\widehat{ACO}=90^o.\)
\(\Rightarrow\) 4 điểm A, B, O, C cùng thuộc một đường tròn đường kính AO.
b) Xét (O):
\(\widehat{ACD}=\widehat{AEC}\) (Góc tạo bởi tia tiếp tuyến và dây; góc nội tiếp cùng chắn \(\stackrel\frown{CD}\)).
Xét \(\Delta ACD\) và \(\Delta AEC:\)
\(\widehat{ACD}=\widehat{AEC}\left(cmt\right).\)
\(\widehat{CAD}chung.\)
\(\Rightarrow\Delta ACD=\Delta AEC\left(g-g\right).\)
\(\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}.\\ \Rightarrow AC^2=AD.AE.\)