CMR : 4n+5 luôn chia hết cho 3 , với mọi n thuộc N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
f(n) = n^5-5n^3+4n
=n5-n3-4n3+4n
=n3.(n2-1)-4n.(n2-1)
=n(n2-1)(n2-4)
=n.(n-1)(n+1)(n-2)(n+2)
ta có: n+1 và n là hai số nguyên liên tiếp nên: n.(n-1) chia hết cho 2
n-1;n;n+1 là ba số nguyên liên tiếp nên: n(n-1)(n+1) chia hết cho 3
n-1;n;n+1;n+2 là bốn số nguyên liên tiếp nên: n(n-1)(n+1)(n+2) chia hết cho 4
n-2;n-1;n;n+1;n+2 là năm số nguyên liên tiếp nên n.(n-1)(n+1)(n-2)(n+2) chia hết cho 5
Suy ra: n.(n-1)(n+1)(n-2)(n+2) chia hết cho 2.3.4.5=120
Vậy f(n) chia hết cho 129 với mọi n thuộc Z
a) Chữ số tận cùng của 74n là : ( 7 * 7 * 7 * 7 ) mod 10 = 1
Vậy chữ số tận cùng của 74n - 1 là : ( 7 * 7 * 7 * 7 - 1 ) mod 10 = 0 ( đpcm )
b) Tương tự
A= n(2n-3)-2n(n+1)
A= 2n2-3n-2n2-2n
A=-5n
vì -5 chia hết cho 5
Nên -5n chia hết cho 5
hay A chia hết cho 5 với n thuộc z
Vì 4 chia 3 dư 1, mũ lên bao nhiêu vẫn chia 3 dư 1
=> 4n với n thuộc N* luôn chia 4 dư 1
Mà 5 chia 3 dư 2
=> 4n + 5 chia hết cho 3
=> đpcm
Bài này lớp 6 bít lm
Ủng hộ mk nha
Bạn đã học đồng dư chưa?
Ta có:
\(4\text{≡}1\left(mod3\right)\)
\(\Rightarrow4^n\text{≡}1^n\left(mod3\right)\)
\(\Rightarrow4^n\text{≡}1\left(mod3\right)\)
\(\Rightarrow4^n+5\text{≡}1+5\text{≡}6\text{≡}0\left(mod3\right)\)
Do đó \(4^n+5\) luôn chia hết cho 3 với mọi n thuộc N*.